www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - Herbrand-Interpretationen
Herbrand-Interpretationen < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herbrand-Interpretationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:29 Di 21.09.2010
Autor: el_grecco

Aufgabe
Die Aufgabenstellung in TeX abzutippen würde eine gefühlte Ewigkeit dauern, deshalb ausnahmsweise als Scan (ich bitte um Nachsicht):

[]Angabe


Hallo,

die Teilaufgaben a) - c) kann ich soweit lösen. Mein Problem ist sowohl die Aufgabenstellung wie auch die Lösung der d).

Mein Problem:
Ich verstehe es so, dass die gesuchte, möglichst kleine Menge B ein oder mehrere Grundatome beinhalten soll. Diese kleine Menge B ist eine Teilmenge der Herbrand-Basis und ihre Herbrand-Interpretation erfüllt alle Formeln aus Teilaufgabe c).
Mir leuchtet es aber nicht ein, wie die Herbrand-Interpretation ein oder mehrerer Grundatome plötzlich alle Formeln aus c) erfüllen kann?

Wenn jemand weiß, wie diese Teilaufgabe funktioniert, wäre es sehr nett, wenn er/sie zumindest in Stichpunkten schreiben könnte, wie man zu dieser Lösung kommt (siehe unten) und warum diese Lösung richtig ist.

Der Vollständigkeit halber die Lösungen auch zu den ersten drei Teilaufgaben:

a)
[mm] $\mathrm{HU}_{\mathcal L}=\{a, f(a), f(f(a)), ...$ $b, f(b), f(f(b)), ...\}$ [/mm]


b)
[mm] $\mathrm{B}_{M}=\{A \mbox{ Grundatom}| \mbox{ M}\models\mbox{ A}\}$ [/mm]

Beobachtung:
[mm] $\mathrm{a}\in\mathrm{HU}_{\mathcal L}$ [/mm]
[mm] $\mathrm{a}^{M}=Tochter$ [/mm]

[mm] $\mathrm{t}\in\mathrm{HU}_{\mathcal L}\backslash\{\mathrm{a}\}$ [/mm]
[mm] $\mathrm{t}^{M}=Mutter$ [/mm]

[mm] $\mathrm{B}_{M}=\{p(a),$ $q\left(a\right), q(f(a)), q(f(f(a))), ...$ $q\left(b\right), q(f(b)), q(f(f(b))), ...$ $r\left(f(a),a\right), r(f(f(a)),a), ...$ $r(b,a), r(f(b),a), r(f(f(b)), a), ...\}$ [/mm]


c)
Für jede universelle Formel [mm] $\phi$ [/mm] gilt:
Wenn [mm] $\mbox{ M}\models\phi$ [/mm] dann [mm] $\mathcal H_{\mathcal L}(\mathrm{B}_{M})\models\phi$ [/mm]

Für jedes [mm] $\mathrm{t}\in\mathrm{HU}_{\mathcal L}$ [/mm] ist [mm] $q(f(t))\in$ [/mm]
[mm] $\mathrm{B}_{M}$ [/mm] also gibt es kein [mm] $\mathrm{t}\in\mathrm{HU}_{\mathcal L}$ [/mm] mit [mm] $\mathcal H_{\mathcal L}(\mathrm{B}_{M})[t/x] \models \neg [/mm] q(f(x))$ also [mm] $\mathcal H_{\mathcal L}(\mathrm{B}_{M})\nvDash\exists x\neg [/mm] q(f(x))$


d)

[mm] $B=\{r(f(f(a)),a)\}$ [/mm]


Vielen Dank.

Gruß
el_grecco


        
Bezug
Herbrand-Interpretationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 25.09.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de