www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Herleitung der eulerschen Form
Herleitung der eulerschen Form < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung der eulerschen Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Fr 26.05.2006
Autor: tobinator

Hallo liebe User,

ich muss für meine Facharbeit (über Komplexe Zahlen) die eulersche Formel, also die Formel, die die Exponentialfunktionen mit den Winkelfunktionen verknüpft, herleiten.
Weiß aber nicht wirklich wie ich das machen soll.
Könnt ihr mir bitte bei diesem Problem helfen?

Vielen Dank schon im Voraus

tobinator

        
Bezug
Herleitung der eulerschen Form: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Fr 26.05.2006
Autor: ElPresidente

unter []http://de.wikipedia.org/wiki/Eulersche_Formel sind gleich 3 herleitungen angegeben.


Bezug
                
Bezug
Herleitung der eulerschen Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Sa 27.05.2006
Autor: tobinator

Ok danke für den Tipp, nur ist mir unklar wieso, bei der 3. Methode (für dich ich mich entschieden habe) per Definition dies so ist?

Das kann ich ja eigentlich nicht in meine Facharbeit schreiben, dies benötigte doch dann wieder einen Beweis, dass es so ist :(

Oder ist der Sachverhalt so einfach, dass ich ihn gerade nicht blicke?

Kann mir jemand helfen?

mfg

tobinator

Bezug
                        
Bezug
Herleitung der eulerschen Form: Unendliche Reihen
Status: (Antwort) fertig Status 
Datum: 12:47 Sa 27.05.2006
Autor: Infinit

Hallo Tobinator,
die Herleitungen auf der Wikipedia-Seite sind in meinen Augen keine Herleitungen, sondern der Nachweis der Gültigkeit der Formel an Fallbeispielen. Du hast Dich wohl für die dritte "Herleitung" entschieden, weil sie  schön kurz ist, aber dann kamst Du doch noch rechtzeitig ins Grübeln.
Mein Vorschlag für eine Herleitung ist recht einfach, mach es wie Euler, der unendliche Reihen schon kannte und sehr virtuos mit ihnen umgehen konnte. Bekannt war damals schon die unendliche Reihe für die e-Funktion:
$$ [mm] e^x [/mm] = 1 + x + [mm] \bruch{x^2}{2 !} [/mm] + [mm] \bruch{x^3}{3 !} [/mm] + ... $$.
Wenn Du anstelle der Variablen x nun ix einsetzt, steht da
$$ [mm] e^{ix} [/mm] = 1 + ix - [mm] \bruch{x^2}{2 !} [/mm] - [mm] \bruch{i x^3}{3 !} [/mm] + [mm] \bruch{x^4}{4 !} [/mm] +- ... $$
Hierbei habe ich schon ausgenutzt, dass [mm] i^2 = -1, i^3 = -i , i^4 = 1 ... [/mm] gilt. Nun kann man die Terme dieser unendlichen Reihe nach Real- und Imaginärteil trennen und erhält $$
[mm] e^{ix} [/mm] = (1 - [mm] \bruch{x^2}{2 !} [/mm] + [mm] \bruch{x^4}{ 4 !} [/mm] -+ ..) + [mm] i\cdot [/mm] (x - [mm] \bruch{x^3}{3 !} [/mm] + [mm] \bruch{x^5}{5 !} [/mm] -+ ...) $$.
Die beiden in den Klammern vorkommenden Reihen sind die Reihenentwicklung für cos (x) und sin (x) und so kommst Du auf den gewünschten Zusammenhang. Übrigens, die Reihenentwicklung für die trigonometrischen Funktionen kannte auch Euler bereits.
Hoffe, es hilft Dir weiter.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Herleitung der eulerschen Form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Sa 27.05.2006
Autor: tobinator

Ja, ich denk mit dem kann ich schon mehr anfangen :)

Vielen Dank an dich ;)

mfg

tobinator

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de