www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Herleitung pq-Formel
Herleitung pq-Formel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung pq-Formel: Formulierung
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 12.03.2015
Autor: nicom88

Aufgabe
[Dateianhang nicht öffentlich]



Hallo, ich habe eine Frage zur Herleitung der pqFormel.

Beim ersten Punkt auf dem Bild steht, die Lösungen der Gleichung sollen allgemein für p und q bestimmt werden.

Mir ist die Formulierung nicht ganz klar.. Wenn ich mögliche Lösungen für p und q bestimme, gucke ich dann nicht im Regelfall, welche Zahlen ich für die Variablen nehmen kann, damit eine Losung möglich ist? Insofern passt das weitere Vorgehen (vgl. die weiteren Punkte) nicht zur Formulierung... Sehe ich das falsch?

Vielen Dank!

MfG


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Herleitung pq-Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Do 12.03.2015
Autor: Herby

Hallo Nicom88,

[aufgemerkt] Buchseiten können urheberrechtlich geschützt sein, daher musste ich deinen Anhang leider sperren. Du kannst den Text natürlich gerne kurz abtippen und dann deine Frage dazu formulieren.




> Hallo, ich habe eine Frage zur Herleitung der pqFormel.
>
> Beim ersten Punkt auf dem Bild steht, die Lösungen der
> Gleichung sollen allgemein für p und q bestimmt werden.
>  
> Mir ist die Formulierung nicht ganz klar.. Wenn ich
> mögliche Lösungen für p und q bestimme, gucke ich dann
> nicht im Regelfall, welche Zahlen ich für die Variablen
> nehmen kann, damit eine Lösung möglich ist? Insofern passt
> das weitere Vorgehen (vgl. die weiteren Punkte) nicht zur
> Formulierung... Sehe ich das falsch?
>  
> Vielen Dank!
>  
> MfG

Naja, wenn ich eine allgemeine Lösung finde, dann ist damit nicht gemeint, dass ich auf EINE Lösung (hier im Beispiel p und q) fixiert bin, sondern, dass diese Lösung(sformel) uneingeschränkt in meinem Definitionsbereich anwendbar ist. War es das, was du wissen wolltest?

Grüße
Herby


Bezug
                
Bezug
Herleitung pq-Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Do 12.03.2015
Autor: nicom88

Aber wenn ich die Formel herleite und quadratische Ergänzung anwende, um im Endeffekt dann auf die pq Formel zu kommen, kann ich dann von einer allgemeinen Lösung für p und q sprechen? Also dass eben die Formelteile bzgl p und q die allgemeine Lösung darstellt?



Bezug
                        
Bezug
Herleitung pq-Formel: ja
Status: (Antwort) fertig Status 
Datum: 18:33 Do 12.03.2015
Autor: Loddar

Hallo nicom!


Kurz und knapp: ja. [ok]


Gruß
Loddar

Bezug
                                
Bezug
Herleitung pq-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Do 12.03.2015
Autor: nicom88

Ok... Vielen Dank dafür an euch beide :)

Bezug
                                        
Bezug
Herleitung pq-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Do 12.03.2015
Autor: Herby


immer gerne [hut]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de