www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Hermitesche DGL Lösung
Hermitesche DGL Lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hermitesche DGL Lösung: Herleitung
Status: (Frage) beantwortet Status 
Datum: 00:01 Do 06.05.2010
Autor: Peter_Pan2

Hallo,

ich habe im Zusammenhang mit dem harmonischen Oszillator mit der hermiteschen Differentialgleichung zu tun:

[mm] H_v(x)''-2xH_v(x)'+2vH_v(x)=0 [/mm] mit [mm] H_v(x) [/mm] als den hermitschen Polynomen (Grad v).

Diese Polynome lösen ja die Gleichung, aber jetzt taucht eine weitere lösung auf, die lautet [mm] H_v(x)=((-1)^n)*(e^x^2)*\bruch{d^ve^-^x^2}{dx^v} [/mm] .

Wie komme ich auf diese Lösung?

Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hermitesche DGL Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Do 06.05.2010
Autor: rainerS

Hallo!

> Hallo,
>  
> ich habe im Zusammenhang mit dem harmonischen Oszillator
> mit der hermiteschen Differentialgleichung zu tun:
>  
> [mm]H_v(x)''-2xH_v(x)'+2vH_v(x)=0[/mm] mit [mm]H_v(x)[/mm] als den
> hermitschen Polynomen (Grad v).
>  
> Diese Polynome lösen ja die Gleichung, aber jetzt taucht
> eine weitere lösung auf, die lautet
> [mm]H_v(x)=((-1)^n)*(e^x^2)*\bruch{d^ve^-^x^2}{dx^v}[/mm] .
>  
> Wie komme ich auf diese Lösung?

Das ist keine andere Lösung, das sind die Hermite-Polynome.

Viele Grüße
   Rainer



Bezug
                
Bezug
Hermitesche DGL Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Mi 26.05.2010
Autor: Peter_Pan2

und wie kommt man auf diese darstellung? habe es soweit verstanden dass man aus dieser darstellung die hermite-polynome v-ten Grades erhält, aber kann man das auch herleiten?

Grüße, Christof

Bezug
                        
Bezug
Hermitesche DGL Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:11 Do 27.05.2010
Autor: rainerS

Hallo Christof!

> und wie kommt man auf diese darstellung? habe es soweit
> verstanden dass man aus dieser darstellung die
> hermite-polynome v-ten Grades erhält, aber kann man das
> auch herleiten?

Ja, ganz allgemein für []orthogonale Polynome, die Lösungen solcher DGLen sind. Das nennt sich Formel von Rodrigues:

[]http://en.wikipedia.org/wiki/Orthogonal_polynomial#Differential_equations_leading_to_orthogonal_polynomials

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de