www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Hessesche Normalform
Hessesche Normalform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessesche Normalform: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:27 Mi 04.01.2012
Autor: ArDa

Aufgabe
Der Abstand der durch die Parameterdarstellung

(x)  1       1      0
(y)= -1  + h 0  + µ 1
(z) 1        0      0 , h,µ € R, gegebenen Ebene zum Nullpunkt ist ( ) -1 (x) 0  ( ) 1 <---- Aufgabe zum ankreuzen

Die Hessesche Normalform der Ebene lautet a) vektoriell:...
                              b) in Koordinatendarstellung:..

Ich habe überhaupt keine Ahnung wie ich es vektoriell oder in Koordinatendarstellung lösen kann aber die 0 ist wohl richtig.

        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 02:06 Mi 04.01.2012
Autor: T_sleeper


> Der Abstand der durch die Parameterdarstellung
>
> (x)  1       1      0
>  (y)= -1  + h 0  + µ 1
> (z) 1        0      0 , h,µ € R, gegebenen Ebene zum
> Nullpunkt ist ( ) -1 (x) 0  ( ) 1 <---- Aufgabe zum
> ankreuzen
>  
> Die Hessesche Normalform der Ebene lautet a)
> vektoriell:...
>                                b) in
> Koordinatendarstellung:..
>  Ich habe überhaupt keine Ahnung wie ich es vektoriell
> oder in Koordinatendarstellung lösen kann aber die 0 ist
> wohl richtig.

Hallo,

wieso sollte der Abstand vom Nullpunkt zur Ebene Null sein? Das würde bedeuten, dass der Nullpunkt in der Ebene liegt, das tut er aber offensichtlich nicht. Setzt du nämlich für (x,y,z)=(0,0,0) ein, so steht in der letzten "Zeile" doch immer 0=1, was natürlich Blödsinn ist. Dieser Widerspruch sagt bereits, dass der Abstand nicht Null sein kann.
Da Abstände logischerweise immer positiv sind, muss die Antwort also 1 sein.
Das sieht man tatsächlich auch ganz leicht, wenn man die Hesse-Normalform berechnet.
Wie habt ihr das denn bisher immer gemacht bzw. wie sieht denn die Hesse-Normalenform ganz allgemein aus? Was braucht man dafür? (Normalenvektor...).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de