www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Hilfe bei Lösung von Ungleichung mit Betrag
Hilfe bei Lösung von Ungleichung mit Betrag < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Lösung von Ungleichung mit Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Sa 11.10.2014
Autor: mcx

Aufgabe
[mm] \bruch{x+1}{| x-1|}\le [/mm] 2



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich bräuchte Hilfe bei der Lösung dieser Ungleichung mit Betrag. Begonnen habe ich damit das ich den "kritischen Punkt" (-1) bestimmt habe an dem der Betrag das Vorzeichen wechselt. Da |x|=x für [mm] x\ge [/mm] 0  und |x|=-x für x< 0 ist habe ich eine Fallunterscheidung gemacht:

Fall 1: x>-1

Dann bekomme ich [mm] \bruch{x+1}{x-1}\le [/mm] 2, also [mm] x\ge-3 [/mm]

Fall 2: x<-1

Dann bekomme ich [mm] \bruch{x+1}{-x+1}\le [/mm] 2, also [mm] x\le -\bruch{1}{3} [/mm]

Ich verstehe die Antworten die ich bekommen habe nicht ganz. Angenommen ich "glaube" meiner Lösung nicht und setze jede Zahl ausser x=-1 ein dann bekomme ich eine wahre Ungleichung. Warum bekomme ich dann so komische Lösungen und nicht nur [mm] x\in\IR x\not=0? [/mm]

Vielen Dank schonmal im Voraus

        
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Sa 11.10.2014
Autor: Diophant

Hallo und

[willkommenvh]

> [mm]\bruch{x+1}{| x-1|}\le[/mm] 2

>
>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Hallo,

>

> ich bräuchte Hilfe bei der Lösung dieser Ungleichung mit
> Betrag. Begonnen habe ich damit das ich den "kritischen
> Punkt" (-1) bestimmt habe an dem der Betrag das Vorzeichen
> wechselt.

Da hast du dich schon vertan, denn das passiert bei x=1.

> Da |x|=x für [mm]x\ge[/mm] 0 und |x|=-x für x< 0 ist

> habe ich eine Fallunterscheidung gemacht:

>

> Fall 1: x>-1

>

> Dann bekomme ich [mm]\bruch{x+1}{x-1}\le[/mm] 2, also [mm]x\ge-3[/mm]

>

> Fall 2: x<-1

>

> Dann bekomme ich [mm]\bruch{x+1}{-x+1}\le[/mm] 2, also [mm]x\le -\bruch{1}{3}[/mm]

>

> Ich verstehe die Antworten die ich bekommen habe nicht
> ganz.

Welche Antworten?

> Angenommen ich "glaube" meiner Lösung nicht und

> setze jede Zahl ausser x=-1 ein dann bekomme ich eine wahre
> Ungleichung. Warum bekomme ich dann so komische Lösungen
> und nicht nur [mm]x\in\IR x\not=0?[/mm]

>

Die Frage verstehe ich nicht. Es kommt tatsächlich eine Lösungsmenge heraus, die man in der Form [mm] \IR\setminus{(a;b)} [/mm] schreiben kann. Ganz falsch können deine Rechnungen (die leider nicht dastehen) nicht gewesen sein: denn die Lösungsmengen enthalten jeweils nur einen Vorzeichenfehler (unabhängig von der völlig falschen Fallunterscheidung). Gehe das ganze am besten nochmals an für die Fälle x>1 bzw. x<1, gib bei Rückfragen nicht nur deine Resultate sondern auch deine Rechnunge mit an und achte inbesondere auf die Vorzeichen!


Gruß, Diophant
 

Bezug
                
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 Sa 11.10.2014
Autor: mcx

Erstmal vielen Dank für die Antwort!

Mir ist ein dummer Fehler passiert. Ich habe Zähler und Nenner beim abschreiben vertauscht....

Die Aufgabe sollte lauten [mm] \bruch{x-1}{|x+1|}\le [/mm] 2

So wie ich es in Erinnerung habe muss man bei diesen Problem eine Fallunterscheidung machen für den fall das der Betrag Vorzeichen wechselt.

Wenn ich das richtig gerechnet habe ändert der Betrag bei x=-1 sein Vorzeichen. Das bedeutet ich muss de Fälle x>-1 und x<-1 betrachten.

Fall 1: x>1

In diesem Fall fallen die Betragsstriche einfach weg da |x|=x für [mm] x\ge [/mm] 0:

[mm] \bruch{x-1}{x+1}\le [/mm] 2;

[mm] x-1\le [/mm] 2(x+1),

[mm] x-1\le [/mm] 2x+2,

[mm] x+3\ge [/mm] 0,

[mm] x\ge [/mm] -3

D.h Im Falle von x>1 bekomme ich die Lösung x [mm] \ge [/mm] -3

Fall 2: x<1

In diesem Fall wird der Betrag negativ d.h es gilt |x|=-x für x<0:

[mm] \bruch{x-1}{-x-1}\le [/mm] 2;

[mm] x-1\le2(-x-1), [/mm]

[mm] x-1\le-2x-2, [/mm]

[mm] 3x\le-1, [/mm]

[mm] x\le -\bruch{1}{3} [/mm]

Im Falle von x<1 bekomme ich die Lösung [mm] x\le -\bruch{1}{3} [/mm]

Und hier stecke ich jetzt fest. Wie gebe ich die Lösungsmenge an? Ich bin mir auch nicht so sicher was es bedeutet wenn ich im Falle x<1 die Lösung [mm] x\le -\bruch{1}{3} [/mm] bekomme. Irgendwie steh ich da auf der Leitung.


Bezug
                        
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Sa 11.10.2014
Autor: Gonozal_IX

Hiho,

> Wenn ich das richtig gerechnet habe ändert der Betrag bei
> x=-1 sein Vorzeichen. Das bedeutet ich muss de Fälle x>-1
> und x<-1 betrachten.

[ok]
  

> Fall 1: x>1

Aufmerksamer arbeiten!
Das ist doch gar nicht der Fall, den du betrachten willst, sondern x>-1!

> D.h Im Falle von x>1 bekomme ich die Lösung x [mm]\ge[/mm] -3

Im Falle von x>-1 bekommst du also die Lösung $x [mm] \ge [/mm] -3$.
Es muss also sowohl x>-1 als auch [mm] x\ge [/mm] -3 gelten.
Wenn beides gelten soll, dann man das also wie zusammenfassen?

Analog beim anderen Fall.

Gruß,
Gono

Bezug
                                
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 11.10.2014
Autor: mcx

Ja sorry! Ich will die Fälle x<-1 und x>-1 betrachten. Solche Vorzeichen Fehler muss ich echt mal abstellen.

Im ersten Fall x>-1 bekomme ich die Lösung [mm] x\ge-3. [/mm]  D.h x muss größer als -1 und größer als -3 sein. Also ist die Lösungsmenge 1:  [mm] L_{1}=\{x | x \mbox{>-1}\} [/mm]

Im zweiten Fall x<-1 bekomme ich die Lösung [mm] x\le-\bruch{1}{3}. [/mm] D.h x muss kleiner als -1 und kleiner als [mm] -\bruch{1}{3} [/mm] sein. Also ist die Lösungsmenge 2: [mm] L_{2}=\{x | x \mbox{ <-1}\} [/mm]

Vereinigt würde ich das so schreiben [mm] L_{1}UL_{2}={x\in\IR|x\not=-1} [/mm]

Bezug
                                        
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 11.10.2014
Autor: Diophant

Hallo,

> Ja sorry! Ich will die Fälle x<-1 und x>-1 betrachten.
> Solche Vorzeichen Fehler muss ich echt mal abstellen.

>

> Im ersten Fall x>-1 bekomme ich die Lösung [mm]x\ge-3.[/mm] D.h x
> muss größer als -1 und größer als -3 sein. Also ist die
> Lösungsmenge 1: [mm]L_{1}=\{x | x \mbox{>-1}\}[/mm]

>

> Im zweiten Fall x<-1 bekomme ich die Lösung
> [mm]x\le-\bruch{1}{3}.[/mm] D.h x muss kleiner als -1 und kleiner
> als [mm]-\bruch{1}{3}[/mm] sein. Also ist die Lösungsmenge 2:
> [mm]L_{2}=\{x | x \mbox{ <-1}\}[/mm]

>

> Vereinigt würde ich das so schreiben
> [mm]L_{1}UL_{2}={x\in\IR|x\not=-1}[/mm]

Es ist alles richtig, aber das schreibt man so:

[mm] L={L_1}\cup{L_2}=\IR\setminus\{-1\} [/mm]


Gruß, Diophant

Bezug
                                                
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 14:12 Sa 11.10.2014
Autor: Gonozal_IX

Hiho,

> Es ist alles richtig, aber das schreibt man so:
>  
> [mm]L={L_1}\cup{L_2}=\IR\setminus\{-1\}[/mm]

da das wie eine Korrektur klingt: Ich sehe nichts, was gegen [mm] $\{x\in\IR | x\not= -1\}$ [/mm] sprechen würde, außer die eigene Faulheit.
Beide Schreibweisen sagen das gleiche aus.

Gruß,
Gono

Bezug
                                                        
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 14:14 Sa 11.10.2014
Autor: Diophant

Moin,

> Hiho,

>

> > Es ist alles richtig, aber das schreibt man so:
> >
> > [mm]L={L_1}\cup{L_2}=\IR\setminus\{-1\}[/mm]

>

> da das wie eine Korrektur klingt: Ich sehe nichts, was
> gegen [mm]\{x\in\IR | x\not= -1\}[/mm] sprechen würde, außer die
> eigene Faulheit.

Schon, aber du hast Mengenklammern drumherum, das ist IMO ein kleiner, aber feiner Unterschied...

> Beide Schreibweisen sagen das gleiche aus.

Ich habe ja auch die Richtigkeit bestätigt.


Gruß, Diophant

 

Bezug
                                                                
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 16:52 Sa 11.10.2014
Autor: DieAcht

Hallo Diophant,


>  > da das wie eine Korrektur klingt: Ich sehe nichts, was

>  > gegen [mm]\{x\in\IR | x\not= -1\}[/mm] sprechen würde, außer

> die
>  > eigene Faulheit.

>  
> Schon, aber du hast Mengenklammern drumherum, das ist IMO
> ein kleiner, aber feiner Unterschied...

Im Quelltext hat er Mengenklammern gesetzt. Das Problem ist das
Übliche: Viele schreiben {a} statt \{a\}. Komischerweise hatte er
es davor richtig gemacht.


Gruß
DieAcht

Bezug
                                                
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Sa 11.10.2014
Autor: mcx

Erstmal vielen vielen Dank euch beiden Für die Antworten. Ich habe noch eine Allgemeine Frage im Bezug auf Ungleichungen mit Betrag. Angenommen ich betrachte bei einer Ungleichung den Bereich x<0 und bekomme als Antwort eine Zahl >0 z.B 5. Wie gehe ich dann vor? Oder allgemeiner ausgedrückt, was mache ich mit Lösungen die nicht in den Bereich fallen den ich gerade betrachte? Wie gehe ich dann vor?

LG

Bezug
                                                        
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Sa 11.10.2014
Autor: Diophant

Hallo,

> Erstmal vielen vielen Dank euch beiden Für die Antworten.
> Ich habe noch eine Allgemeine Frage im Bezug auf
> Ungleichungen mit Betrag. Angenommen ich betrachte bei
> einer Ungleichung den Bereich x<0 und bekomme als Antwort
> eine Zahl >0 z.B 5. Wie gehe ich dann vor? Oder allgemeiner
> ausgedrückt, was mache ich mit Lösungen die nicht in den
> Bereich fallen den ich gerade betrachte? Wie gehe ich dann
> vor?

na das ist ganz einfach: für jeden Fall erhält man ja die betreffende Lösungsmenge als Schnitt des betrachteten Falls, also etwa x<0 und der erhaltenen Lösung, also etwas x>5. In einem solchen Fall ist die Schnittmenge leer, d.h., der betrachtete Fall trägt zur Lösungsmenge im wahrten Sinne des Wortes nichts bei. :-)


Gruß, Diophant

Bezug
                                                                
Bezug
Hilfe bei Lösung von Ungleichung mit Betrag: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Sa 11.10.2014
Autor: mcx

Ah. Jetzt mach das Sinn. Vielen Dank.

Ich wünsche noch einen schönen Samstag nachmittag.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de