www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Hilfe bei Stammfunktion
Hilfe bei Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Stammfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:58 Di 03.12.2013
Autor: arcissolutions

Aufgabe
Gegeben ist f(x)=x²*e^(-x).
Berechnen Sie für a > 0 den Inhalt der Fläche, die der Graph von f mit der x-Achse in den Grenzen 0 und a einschließt. Was ergibt sich für [mm] \limes_{a\rightarrow\infty} [/mm] .

Wie man die Aufgabe löst ist mir bewusst, bzw. ich habe sie bereits gelöst. Dazu muss man ja nur das Integral von f auf dem Intervall [0, a] berechnen und a dann gegen Unendlich gehen lassen.
Meine Frage liegt eher in der Lösung:

Ich benutze dabei die partielle Integration:

[mm] \integral_{0}^{a}{x²*e^(-x) dx} [/mm]
Mit u = x², u' = 2x, v' = e^(-x) und v = -e^(-x)

= -x²*e^(-x) - [mm] \integral_{}^{}{2x*(-e^(-x) dx} [/mm]
= -x²*e^(-x) - 2x*e^(-x) - [mm] \integral_{}^{}{2*e^(-x) dx} [/mm]

Und nun zu meinem Problem:
Ich weiß, dass die Stammfunktion zu f [mm] -x^2*e^{-x}-2x*e^{-x}-2*e^{-x} [/mm] lautet. Aber [mm] \integral_{}^{}{2*e^(-x) dx} [/mm] ist ja = -2*e^(-x). Würde ich das da so einsetzen, so erhalte ich ja [mm] -x^2*e^{-x}-2x*e^{-x}+2*e^{-x}, [/mm] was ja nicht richtig ist.
Könnt ihr mir vielleicht sagen, wo da bei mir ein Logikfehler liegt, oder ob ich nicht an anderer Stelle einen Fehler dabei gemacht habe?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hilfe bei Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Di 03.12.2013
Autor: schachuzipus

Auch dir ein recht freundliches "Hallo"!


> Gegeben ist f(x)=x²*e^(-x).

Exponenten mache besser mit dem Dach ^ links neben der 1, etwa [mm]x^2[/mm] so: x^{2}

> Berechnen Sie für a > 0 den Inhalt der Fläche, die der
> Graph von f mit der x-Achse in den Grenzen 0 und a
> einschließt. Was ergibt sich für
> [mm]\limes_{a\rightarrow\infty}[/mm] .
> Wie man die Aufgabe löst ist mir bewusst, bzw. ich habe
> sie bereits gelöst. Dazu muss man ja nur das Integral von
> f auf dem Intervall [0, a] berechnen und a dann gegen
> Unendlich gehen lassen.
> Meine Frage liegt eher in der Lösung:

>

> Ich benutze dabei die partielle Integration:

gute Idee!

>

> [mm]\integral_{0}^{a}{x²*e^(-x) dx}[/mm]

Hier ist das Quadrat nicht sichtbar ...

> Mit u = x², u' = 2x, v'
> = e^(-x) und v = -e^(-x)

ok!

>

> = -x²*e^(-x) - [mm]\integral_{}^{}{2x*(-e^(-x) dx}[/mm]

[ok]

Bissl unsauber - mal mit Grenzen, mal ohne, aber ok

> =
> -x²*e^(-x) - 2x*e^(-x) - [mm]\integral_{}^{}{2*e^(-x) dx}[/mm]

vor dem Integral sollte doch ein "+" stehen ...

>

> Und nun zu meinem Problem:
> Ich weiß, dass die Stammfunktion zu f
> [mm]-x^2*e^{-x}-2x*e^{-x}-2*e^{-x}[/mm] lautet. Aber
> [mm]\integral_{}^{}{2*e^(-x) dx}[/mm] ist ja = -2*e^(-x). [ok] Würde ich
> das da so einsetzen, so erhalte ich ja
> [mm]-x^2*e^{-x}-2x*e^{-x}+2*e^{-x},[/mm] was ja nicht richtig ist.
> Könnt ihr mir vielleicht sagen, wo da bei mir ein
> Logikfehler liegt, oder ob ich nicht an anderer Stelle
> einen Fehler dabei gemacht habe?

Das Vorzeichen vor dem Integral nach der 2. partiellen Integration ist falsch.

Entweder machst du vorher eine dicke Minusklammer oder schreibst

[mm]-x^2e^{-x}-\int{2x(-e^{-x}) \ dx} \ = \ -x^2e^{-x}\red +\int{2xe^{-x} \ dx}[/mm]

und integrierst dann nochmal partiell

>
>
>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß zurück!

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de