www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Hochhebung, Überlagerung
Hochhebung, Überlagerung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hochhebung, Überlagerung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Mi 16.11.2011
Autor: Lippel

Aufgabe
Die Abbildung $p: [mm] S^1 \times S^3 \to S^1 \times S^3, [/mm] (z,x) [mm] \mapsto (z^3,x)$ [/mm] (wobei [mm] $S^1$ [/mm] als Teilmenge von [mm] $\IC$ [/mm] aufgefasst wird), ist eine Überlagerung. Existiert zu gegebener Abbildung $f: [mm] \IR{P}^4 \to S^1 \times S^3$ [/mm] eine Abbildung $F: [mm] \IR{P}^4 \to S^1 \times S^3$ [/mm] mit $pF = [mm] F\;$? [/mm]
[mm] ($\IR{P}^4$ [/mm] bezeichnet die reelle projektive Ebene).

Hallo,

leider komme ich nicht so richtig weiter bei dieser Aufgabe.
Die Frage ist ja, ob eine Hochhebung von [mm] $F\;$ [/mm] bezüglich der Überlagerung [mm] $p\;$ [/mm] existiert. [mm] $p\;$ [/mm] ist eine Überlagerung vom Grad 3.

Wir haben in der Vorlesung 3 Sätze zur Existenz von Hochhebungen behandelt, die ersten beiden bezogen sich jedoch auf Wege bzw. Homotopien. Diese kann ich hier ja nicht anwenden.
Des weiteren hatten wir den allgemeinen Hochhebungssatz. Dieser würde mir im Fall [mm] $im(f_{\*}:\pi_1(\IR{P}^4) \to \pi_1(S^1 \times S^3)) \subset im(p_{\*}:\pi_1(S^1 \times S^3) \to \pi_1(S^1 \times S^3))$ [/mm] die Existenz einer Hochhebung garantieren.
Ich weiß, dass [mm] $\pi_1(S^1 \times S^3) \cong \IZ$ [/mm] ist und [mm] $im(f_{\*}:\pi_1(\IRP^4) \to \pi_1(S^1 \times S^3)) \cong 3\IZ \subset \IZ$. [/mm]
Aber ich weiß nicht, was die Fundamentalgruppe der projektiven Ebene ist. Und wir haben bisher auch kaum Hilfsmittel kennen gelernt, eine Fundamentalgruppe zu bestimmen. Ich denke also, dass wir gar nicht mit dem Satz arguemtieren sollen, sondern vielleicht anders.
Hat jemand eine Idee, wie ich weiter kommen könnte?

LG Lippel

        
Bezug
Hochhebung, Überlagerung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Do 17.11.2011
Autor: Berieux

Hi!

> Die Abbildung [mm]p: S^1 \times S^3 \to S^1 \times S^3, (z,x) \mapsto (z^3,x)[/mm]
> (wobei [mm]S^1[/mm] als Teilmenge von [mm]\IC[/mm] aufgefasst wird), ist eine
> Überlagerung. Existiert zu gegebener Abbildung [mm]f: \IR{P}^4 \to S^1 \times S^3[/mm]
> eine Abbildung [mm]F: \IR{P}^4 \to S^1 \times S^3[/mm] mit [mm]pF = F\;[/mm]?
>  
> ([mm]\IR{P}^4[/mm] bezeichnet die reelle projektive Ebene).
>  Hallo,
>  
> leider komme ich nicht so richtig weiter bei dieser
> Aufgabe.
>  Die Frage ist ja, ob eine Hochhebung von [mm]F\;[/mm] bezüglich
> der Überlagerung [mm]p\;[/mm] existiert. [mm]p\;[/mm] ist eine Überlagerung
> vom Grad 3.
>  
> Wir haben in der Vorlesung 3 Sätze zur Existenz von
> Hochhebungen behandelt, die ersten beiden bezogen sich
> jedoch auf Wege bzw. Homotopien. Diese kann ich hier ja
> nicht anwenden.
>  Des weiteren hatten wir den allgemeinen Hochhebungssatz.
> Dieser würde mir im Fall [mm]im(f_{\*}:\pi_1(\IR{P}^4) \to \pi_1(S^1 \times S^3)) \subset im(p_{\*}:\pi_1(S^1 \times S^3) \to \pi_1(S^1 \times S^3))[/mm]
> die Existenz einer Hochhebung garantieren.
>  Ich weiß, dass [mm]\pi_1(S^1 \times S^3) \cong \IZ[/mm] ist und
> [mm]im(f_{\*}:\pi_1(\IRP^4) \to \pi_1(S^1 \times S^3)) \cong 3\IZ \subset \IZ[/mm].
>  

Du meinst [mm]Im( p_{*})[/mm].

> Aber ich weiß nicht, was die Fundamentalgruppe der
> projektiven Ebene ist. Und wir haben bisher auch kaum

Hmm. Das bräuchte man hier schon (zumindest sehe ich gerad keinen anderen Weg). Naja, die Fundamentalgruppe der projektiven Räume ist in Dimension > 1 [mm] \mathbb{Z}_{2} [/mm].
Das einzusehen ist auch nicht so schwer, denn die universelle Überlagerung [mm]S^{n}\to \mathbb{R}P^{n}[/mm] ist zweiblättrig (ich denke du kennst das; man identifiziert einfach gegenüberliegende Punkte).
Damit läßt sich die Aufgabe dann recht gut lösen.


> Hilfsmittel kennen gelernt, eine Fundamentalgruppe zu
> bestimmen. Ich denke also, dass wir gar nicht mit dem Satz
> arguemtieren sollen, sondern vielleicht anders.
>  Hat jemand eine Idee, wie ich weiter kommen könnte?
>  
> LG Lippel


Beste Grüße,
Berieux

Bezug
                
Bezug
Hochhebung, Überlagerung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:36 Do 17.11.2011
Autor: Lippel

Danke! Hatte nicht dran gedacht, dass ich über die Decktransformationen die Fundamentalgruppe bestimmen kann. Super, damit gehts dann natürlich.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de