www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Höhenlinien
Höhenlinien < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Mo 05.06.2006
Autor: Riley

Aufgabe
Man bestimme sämtliche Höhenlinien der durch f(0,0)=0 sowie
f(x,y) = [mm] \bruch{xy}{x²+y²} [/mm] für (x,y) [mm] \not= [/mm] 0 definierten Funktion.
Anleitung: Man führe zweidimensionale Polarkoordinaten ein.  

Hi liebe Mathe-leute!
bin grad am aufgaben üben zu denen ich leider keine lösungen hab, hoffe ihr könnt mir weiterhelfen!
das mit den polarkoordinaten hab ich so versucht:
x= r [mm] cos(\psi) [/mm]
y= r [mm] sin(\psi) [/mm]
d.h. f(r [mm] cos(\psi), [/mm] r [mm] sin(\psi)) [/mm] = [mm] \bruch{r²cos(\psi)sin(\psi)}{r²cos²(\psi)+r²sin(\psi)} [/mm] = [mm] cos(\psi) sin(\psi) [/mm] , da sin²+cos²=1.
stimmt das so?

für die höhenlinien muss ich dann
[mm] cos(\psi) sin(\psi) [/mm] = konst. setzen, oder?
bedeutet das, die höhenlinien sind einfach die sin und cos kurve?

viele grüße
riely :-)

        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mo 05.06.2006
Autor: leduart

Hallo Riley
> Man bestimme sämtliche Höhenlinien der durch f(0,0)=0 sowie
> f(x,y) = [mm]\bruch{xy}{x²+y²}[/mm] für (x,y) [mm]\not=[/mm] 0 definierten
> Funktion.
>  Anleitung: Man führe zweidimensionale Polarkoordinaten
> ein.
> Hi liebe Mathe-leute!
>  bin grad am aufgaben üben zu denen ich leider keine
> lösungen hab, hoffe ihr könnt mir weiterhelfen!
>  das mit den polarkoordinaten hab ich so versucht:
>  x= r [mm]cos(\psi)[/mm]
>  y= r [mm]sin(\psi)[/mm]
>  d.h. f(r [mm]cos(\psi),[/mm] r [mm]sin(\psi))[/mm] =
> [mm]\bruch{r²cos(\psi)sin(\psi)}{r²cos²(\psi)+r²sin(\psi)}[/mm] =
> [mm]cos(\psi) sin(\psi)[/mm] , da sin²+cos²=1.
>  stimmt das so?

Richtig, noch einfacher:   [mm][mm] cos(\psi) sin(\psi)=1/2*[/mm]  [mm]sin(2*\psi)[/mm]

> für die höhenlinien muss ich dann
>  [mm]cos(\psi) sin(\psi)[/mm] = konst. setzen, oder?

ja!

>  bedeutet das, die höhenlinien sind einfach die sin und cos
> kurve?

Nein! du hast doch z, Bsp [mm] 0,5*sin2\psi= [/mm] 0,1, was bedeutet denn das für [mm] \psi? [/mm] und was für r? Du musst dir jetzt doch die Ebene mit Polarkoordinaten vorstellen!  
Gruss leduart


Bezug
                
Bezug
Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 05.06.2006
Autor: Riley

Hi Leduart!
danke für deine antwort!

... ich versteh aber noch nicht ganz, warum gilt [mm] cos(\psi) sin(\psi) [/mm] = 0,5 [mm] sin(2\psi) [/mm] ??

hm, mein r ist doch irgendwie gar nicht mehr da ? und das mit der ebene kann ich mir auch noch nicht vorstellen... brauch ich dann nicht 3 koordinaten?

viele grüße
riley

Bezug
                        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mo 05.06.2006
Autor: leduart

Hallo riley
> ... ich versteh aber noch nicht ganz, warum gilt [mm]cos(\psi) sin(\psi)[/mm]
> = 0,5 [mm]sin(2\psi)[/mm] ??

Additionstheorem für sin, sin (a+a)  Die einfachen Sätze über sin und cos sollte man kennen!

> hm, mein r ist doch irgendwie gar nicht mehr da ?

D.h. es gilt für alle r!
und das

> mit der ebene kann ich mir auch noch nicht vorstellen...
> brauch ich dann nicht 3 koordinaten?

Wie willst du die denn unterbringen? Auf der Erde hast du doch auch nur Längen und Breitengrade!
So wie im Kartesischen Koordinatensystem die linen x=const parallelen zur y-Achse, y=cons Parallelen zur x- Achse sind, und du "kariertes" Papier benutzt um si darzustellen ist jetzt die Ebene nicht kariert, sondern mit Kreisen um den Nullpunkt versehen, das sind die Linien r=const und mit Geraden durch den Nullpunkt, das sind die Linien [mm] \phi=const. [/mm]
Gruss leduart



Bezug
                                
Bezug
Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 Mo 05.06.2006
Autor: Riley

Hi Leduart!
cool, danke für deine erklärung mit den kreisen und geraden!

d.h. wenn r beliebig ist, sind das irgendwelche kreise um den nullpunkt?

und [mm] sin(2\psi)= [/mm] 2c.
gibt der sin dann den winkel zwischen x-achse und gerade durch den ursprung an?
muss ich das zum einzeichnen dann noch genauer berechnen, welche geraden es sind?

gruß riley

Bezug
                                        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mo 05.06.2006
Autor: Event_Horizon

Der SIN gibt dir nicht den Winkel. [mm] \phi [/mm] ist der Winkel zur x-Achse!

Und das mit r hast du falsch rum verstanden.

Du hast jetzt [mm] $\sin(2\phi)=c$, [/mm] das gibt dir also alle Punkte, die alle den gleichen Funktionswert liefern.

Du siehst, das ist NUR von [mm] \phi [/mm] abhängig. Das heißt doch, diese Punkte bilden alle mit dem Ursprung und der x-Achse den gleichen Winkel.


Oder anders ausgedrückt: Die Punkte liegen alle auf einer Halbgraden, die im Ursprung beginnt, und dann unter dem Winkel verläuft.


Beachte: Es gibt fast immer ZWEI Winkel, die die Gleichung erfüllen, also gibt es für jedes c auch ZWEI Graden.

Bezug
                                                
Bezug
Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Di 06.06.2006
Autor: Riley

HI!
Danke für deine Antwort.
wie kann ich dass denn richtig rum mit r verstehen'??

ops, stimmt [mm] \psi [/mm] ist mein winkel.
woher weiß ich dann welche zwei winkel ich einzeichnen muss?
und warum nur fast immer?

viele grüße
riley

Bezug
                                                        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 06.06.2006
Autor: leduart

Hallo Riley
Zeichne die mal die sinfkt y=sinx zwischen 0  und [mm] 2\pi [/mm] auf. Und dann schneid sie mit Geraden, y=const! was fällt dir auf?
Gruss leduart

Bezug
                                                                
Bezug
Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 06.06.2006
Autor: Riley

Hi Leduart!
Stimmt, ich bekomme immer 2 schnittpunkte :-)

muss ich dann nur 2 halbgeraden vom nullpunkt aus zeichnen?

und wie war das mit den kreisen, sind das keine höhenlinien der funktion oder was hab ich mit r falsch verstanden'??

viele grüße
riley

Bezug
                                                                        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 06.06.2006
Autor: Event_Horizon

Was ich meinte ist, daß die Höhenlinie auf den Graden liegen, nicht auf Kreisen. Das hast du wohl falsch verstanden.

Und ja, du mußt für jede "Höhe", also jeden konstanten Funktionswert zwei Halbgraden zeichnen.

Idealerweise nimmst du meinetwegen 8-10 Funktionswerte (die liegen ja alle in [-1;1]), berechnest dafür die Winkel, und zeichnest das dann, vielleicht sogar bunt. Dann bekommst du eine Vorstellung davon, wie sich die Höhenlinien verhalten, wenn du höhere oder tiefere Funktionswerte nimmst.

Bezug
                                                                        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 06.06.2006
Autor: leduart

Hallo riley
Du musst meine Antwort mit der Beschreibung der Polarkoordinaten falsch verstanden haben. Ich hatte erklärt, dass die Kreise in Polarkoordinaten die Linien r=const sind, genau wie die Achsenparallelen Geraden im x-ySystem die Linien x=cons bzw y=const sind. Deine Höhenlinien sind aber die Linien [mm] sin2\phi=const [/mm] also Halbgeraden durch den Ursprung, und alle r dürfen vorkommen, deshalb werden alle Kreise geschnitten.
(die Funktion [mm] f(x)=x^2+y^2$ [/mm] hat Kreise als Höhenlinien! (wegen [mm] f(r,\phi)=r)) [/mm]
Gruss leduart

Bezug
                                                                                
Bezug
Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Di 06.06.2006
Autor: Riley

Hi!
okay, vielen dank für die erklärungen nochmal! :)

also meine höhenlinien sind die halbgeraden durch den ursprung.
jetzt bin ich aber bissle durcheinander, wenn die kreise nicht dazu gehören, warum werden sie dann geschnitten?

und zum Einzeichnen, diese aufgabe ist ja aus ner alten klausur. da ja keine hilfsmittel wie taschenrechner erlaubt sind, kann ich die winkel ja gar nicht genau ausrechnen??

viele grüße
riley

Bezug
                                                                                        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Di 06.06.2006
Autor: Event_Horizon

Ohne Taschenrechner wirst du kaum den Winkel für einen bestimten Funktionswert berechnen können.

Aber denk dran, daß die Sinus-Funktion symmetrisch verläuft, soll heißen, für 45° wird der Sinus oben ja 1, das ist sein höchster Punkt. Wenn du jetzt eine Grade mit 30° zeichnest, muß die zweite Grade einen Winkel von 60° haben.

Oder anders ausgedrückt: Die zweite Halbgrade ist eine Spiegelung der ersten an der 45°-Grade!


Es gibt aber noch einen Trick: Setze in deine Funktion ein beliebiges xy-Paar ein, und du bekommst einen Wert. zeichne dann eine Ursprungshalbgrade durch dieses xy-Paar, und alle Punkte auf dieser Linie haben den gleichen Funktionswert. (2. Grade nicht vergessen!)

Du kannst alternativ auch einen Funktionswert vorgeben und versuchen, ein xy-Paar zu finden, so kannst du auchgezielt Höhenlinien zeichnen!

Bezug
                                                                                                
Bezug
Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 Mi 07.06.2006
Autor: Riley

danke für die tipps und tricks zum zeichnen!
also ich nehm z.B. f(1,1) = [mm] \bruch{1}{2} [/mm] und zeichne die halbgerade durch den ursprung und (1,1), richtig?
aber wie komm ich dann auf die 2.gerade, auch durch spiegelung??

viele grüße
riley

Bezug
                                                                                                        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Do 08.06.2006
Autor: Event_Horizon

Das Vorgehen ist richtig, allerdings liegt der Punkt (1|1) ja auf der Halbachse, an der gespiegelt werden soll. Demnach gibt es dann keine weitere grade. Das ist der Fall, wo du die Sinuskurve und y=1 gezeichnet hast - hier gibt es jeweils nur eine Lösung, nicht zwei.


Aber wenn du den Punkt (1|2) nimmst, kannst du ebenso (2|1) benutzen, das gibt den gleichen Funktionswert. Und der eine Punkt ist die Spiegelung vom zweiten!

Bezug
                                                                                                                
Bezug
Höhenlinien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:38 Do 08.06.2006
Autor: Riley

ah okay, vielen dank für deine hilfe!!
ich denk, dann hab ich die aufgabe :-)

viele grüße
riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de