www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Homöomorphie von S1 und RP1
Homöomorphie von S1 und RP1 < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homöomorphie von S1 und RP1: Tipp/Hinweis
Status: (Frage) beantwortet Status 
Datum: 17:39 Mi 31.10.2012
Autor: huzein

Aufgabe
Zeigen Sie, dass die folgenden topologischen Räume homöomorph zueinander sind:
1) [mm] $S^2$ [/mm] und [mm] $\mathbb C\mathbb P^1$ [/mm]
2) [mm] $S^1$ [/mm] und [mm] $\mathbb R\mathbb P^1$ [/mm]

habe obige Aufgabe zu lösen. Ich weiß was ein Homöomorphismus ist, nur fällt mir einfach nicht ein wie ich eine Abbildung logisch kontruieren kann, die eben die eine Menge homöomorph zu der anderen Menge abbildet.

Gibt es da einen Weg, wie man solche Abbildungen konstruieren kann?

LG

        
Bezug
Homöomorphie von S1 und RP1: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Fr 02.11.2012
Autor: Leopold_Gast

Es ist die Frage, wie du die Räume konkret realisierst.

1.
Ich fasse einmal [mm]S^1[/mm] als die Menge alle [mm]p \in \mathbb{R}^2[/mm] mit [mm]|p|=1[/mm] auf (die Striche mögen die euklidische Norm bezeichnen).

2.
Und für [mm]\mathbb{RP}^1[/mm] betrachte ich zwei Punke [mm]p,p' \in \mathbb{R}^2 \setminus \{ 0 \}[/mm] als äquivalent, wenn sie als Vektoren betrachtet linear abhängig sind:

[mm]p \sim p' \ \ \Leftrightarrow \ \ p,p' \ \ \mbox{linear abhängig}[/mm]

Die Elemente von [mm]\mathbb{RP}^1[/mm] sind gerade die Äquivalenzklassen

[mm][p] = \left\{ \, p' \, \left| \, p' \sim p \, \right. \right\}[/mm]

Man kann [mm][p][/mm] anschaulich als Ursprungsgerade durch [mm]p[/mm] auffassen.


Jetzt stellen wir uns Folgendes vor: Wir nehmen einen Punkt [mm]p[/mm] der Kreislinie [mm]S^1[/mm] und zeichnen die Ursprungsgerade durch diesen Punkt. Dann ist die Zuordnung [mm]p \mapsto [p][/mm] fast schon das, was wir suchen.
Wenn wir nämlich [mm]p[/mm], rechts bei [mm](1,0)[/mm] beginnend, gegen den Uhrzeigersinn den Kreis durchlaufen lassen, drehen sich auch die Geraden [mm][p][/mm] entsprechend mit. Jetzt gibt es nur noch ein Problem: Schon nach einer halben Drehung war jede Gerade einmal dran. Für die zweite Kreishälfte kommt jede Gerade genau noch einmal vor. Daher ist die Abbildung [mm]p \mapsto [p][/mm] nicht injektiv. Wir müssen folglich die Punkte [mm]p[/mm] und [mm]-p[/mm] der Kreislinie identifizieren, als wären sie nur ein Punkt.
Wir betrachten daher Punktepaare [mm]\{ p,-p \}[/mm] und ordnen jedem Punktepaar die Äquivalenzklasse zu:

[mm]\{ p,-p \} \mapsto [p] = [-p][/mm]

Jetzt haben wir zwar Injektivität (denn verschiedene Punktepaare links führen auch zu verschiedenen Geraden rechts), aber links stehen keine Elemente von [mm]S^1[/mm] mehr, sondern Paare aus einem Punkt und seinem diametral entgegengesetzten Punkt. Der "Kreis" schließt sich jetzt sozusagen nach einer halben Drehung: Ganz zu Anfang ist man bei [mm]\{ (1,0),(-1,0) \}[/mm], nach einer Vierteldrehung bei [mm]\{ (0,1),(0,-1) \}[/mm], nach einer Halbdrehung bei [mm]\{ (-1,0),(1,0) \}[/mm], also wieder am Anfang, wo man gestartet war. Auch dieses Identifizieren von [mm]p[/mm] und [mm]-p[/mm] führt zu etwas Geschlossenem, also einer "Kreislinie".

Wie bekommt man das Phänomen jetzt rechnerisch in den Griff? Da hilft die komplexe Wurzelfunktion. Diese halbiert den Polarwinkel eines [mm]p \in S^1[/mm] (jetzt als Teilmenge von [mm]\mathbb{C}[/mm] aufgefaßt). Von den beiden möglichen Wurzelwerten entscheiden wir uns für den mit positivem Imaginärteil (wobei wir bei [mm]\sqrt{1}[/mm] von den beiden Möglichkeiten [mm]\sqrt{1}=1[/mm] nehmen). Die Werte der Wurzelfunktion bilden dann die obere Kreislinienhälfte ohne den Punkt [mm]-1[/mm]. Ich bezeichne diese Kreishälfte mit [mm]S_+^1[/mm]. Jetzt übertragen wir das formal auf den [mm]\mathbb{R}^2[/mm], fassen also [mm]S^1[/mm] und [mm]S_+^1[/mm] wieder als Teilmengen von [mm]\mathbb{R}^2[/mm] auf. Wir stellen [mm]p \in S^1[/mm] folgendermaßen dar:

[mm]p = \left( \cos t , \sin t \right) \ \ \text{mit} \ \ 0 \leq t < 2 \pi[/mm]

und definieren die Wurzelfunktion folgendermaßen:

[mm]\sqrt{\cdot}: \ S^1 \to S_+^1} \, , \ \ p \mapsto \sqrt{p} = \left( \cos \frac{t}{2} , \sin \frac{t}{2} \right)[/mm]

Dann ist

[mm]\varphi: S^1 \to \mathbb{RP}^1 \, , \ \ p \mapsto \left[ \sqrt{p} \right][/mm]

ein Homöomorphismus zwischen [mm]S^1[/mm] und [mm]\mathbb{RP}^1[/mm]. Zur Stetigkeit sollte man sich noch ein paar Gedanken machen, denn [mm]p \mapsto \sqrt{p}[/mm] ist bei [mm](1,0)[/mm] unstetig. Nähert man sich mit [mm]p[/mm] von oben an [mm](1,0)[/mm] an, dann strebt [mm]\sqrt{p}[/mm] (von oben) gegen [mm](1,0)[/mm], nähert man sich dagegen von unten an [mm](1,0)[/mm] an, strebt [mm]\sqrt{p}[/mm] (von oben) gegen [mm](-1,0)[/mm]. Diese Unstetigkeit wird aber durch die Äquivalenzklassenbildung [mm]\left[ \sqrt{p} \right][/mm] kompensiert, denn [mm][(1,0)] = [(-1,0)][/mm], weil [mm](1,0) \sim (-1,0)[/mm] gilt (die Vektoren sind ja linear abhängig).

Im Anhang habe ich den Homöomorphismus einmal konkret mit dynamischer Geometrie realisiert. Verwende zum Öffnen der Datei []Euklid.

[a]

Dateianhänge:
Anhang Nr. 1 (Typ: geo) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de