www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Homomorphism. proj. Systeme
Homomorphism. proj. Systeme < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphism. proj. Systeme: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:03 Mi 13.07.2011
Autor: Lippel

Aufgabe
Sei $I$ partiell geordnet und gerichtet und [mm] $(G_{i},g_{ij}), (H_{i},h_{ij})$ [/mm] projektive Systeme von abelschen Gruppen bezüglich I. [mm] $\psi: (G_{i},g_{ij}) \to (H_{i},h_{ij})$ [/mm] ein Homomorphismus projektiver Systeme, d.h eine Familie von Homomorphismen [mm] $\psi_i: G_i \to H_i$, [/mm] sodass für alle $i [mm] \leq [/mm] j$ gilt [mm] $h_{ij} \circ \psi_j [/mm] = [mm] \psi_i \circ g_{ij}$ [/mm]

Zeigen Sie, dass [mm] $\psi$ [/mm] einen kanonischen Homomorphismus [mm] $\overline{\psi}: \underleftarrow{lim} \:G_i \to \underleftarrow{lim} \:H_i$ [/mm] induziert.

Hallo,

ich setze zunächst $G:= [mm] \underleftarrow{lim} \:G_i$ [/mm] und [mm] $H:=\underleftarrow{lim} \:H_i$. [/mm]
Ich konnte nachrechnen, dass [mm] $\overline{\psi}: [/mm] G [mm] \to [/mm] H$ wohldefinierter Homomorphismus ist.

Nun muss ich noch zeigen, dass [mm] $\overline\psi$ [/mm] stetig ist, wenn ich $H$ und $G$ als mit der Teilraumtopologie der Krulltopologie auf [mm] $\produkt_i G_i$ [/mm] bzw. [mm] $\produkt_i H_i$ [/mm] versehen betrachte.
Mir fällt es dabei schon schwer zu erkennen, wie die offenen Mengen in $H$ und $G$ aussehen.
Ich nehme mir $U [mm] \subseteq [/mm] H$ offen. Heißt das, dass ich U wie folgt schreiben kann: $U = [mm] \bigcup_{j \in J} \produkt_{i \in I} U_{ij}$ [/mm] mit [mm] $U_{ij} \subseteq H_i$ [/mm] offen und für jedes $j [mm] \in [/mm] J$ sind fast alle [mm] $U_{ij} [/mm] = [mm] H_i$? [/mm] Oder wie sehen die offenen Mengen im allgemeinen aus?
Da [mm] $H_i$ [/mm] ja jeweils mit der diskreten Topologie versehen ist, wären die [mm] $U_{ij}$ [/mm] ja sowieso offen.

Nun müsste ich zeigen, dass [mm] $\overline\psi^{-1}(U) \subseteq [/mm] G$ offen ist. Es ist [mm] $\overline\psi^{-1}(U) [/mm] = [mm] \overline\psi^{-1}(\bigcup_{j \in J} \produkt_{i \in I} U_{ij}) [/mm] = [mm] \bigcup_{j \in J}\overline\psi^{-1}(\produkt_{i \in I} U_{ij}) \overset{?}{=} \bigcup_{j \in J}\produkt_{i \in I}\psi_i^{-1}(U_{ij})$. [/mm]
Da [mm] $U_{ij} [/mm] = [mm] H_i$ [/mm] für fast alle $i$ ist, ist [mm] $\psi_i^{-1}(U_{ij}) [/mm] = [mm] G_i$ [/mm] für fast alle ist und somit [mm] $\overline\psi^{-1}(U)$ [/mm] offen in $G$.

So, was stimmt davon, was nicht?

Vielen Dank für eure Hilfe,

LG Lippel

        
Bezug
Homomorphism. proj. Systeme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Fr 15.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de