www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Homomorphismus - Beispiel
Homomorphismus - Beispiel < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismus - Beispiel: homomorphismus - isomorphismus
Status: (Frage) beantwortet Status 
Datum: 00:16 Mi 01.07.2009
Autor: mathe-tu-muenchen

Hallo!

Ich habe leider keine genau Angabe vor mir liegen, aber mich beschäftigt soeben folgendes Beispiel:

gegeben: Zwei verschiedene isomorphe Untergruppen U1 und U2 der symmetrischen Gruppe S3

gesucht: Angabe eines Isomorphismus zwischen U1 und U2

Wie könnte ich da vorgehen? Ich weiß zwar prinzipiell wie eine Homomorphismus bzw. ein Isomorphismus definiert ist, aber ein Beispiel dafür habe ich noch nie gesehen?

Würde mich über Hilfe freuen!

        
Bezug
Homomorphismus - Beispiel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:55 Mi 01.07.2009
Autor: angela.h.b.


> Hallo!
>  
> Ich habe leider keine genau Angabe vor mir liegen, aber
> mich beschäftigt soeben folgendes Beispiel:
>  
> gegeben: Zwei verschiedene isomorphe Untergruppen U1 und U2
> der symmetrischen Gruppe S3
>  
> gesucht: Angabe eines Isomorphismus zwischen U1 und U2
>  
> Wie könnte ich da vorgehen? Ich weiß zwar prinzipiell wie
> eine Homomorphismus bzw. ein Isomorphismus definiert ist,
> aber ein Beispiel dafür habe ich noch nie gesehen?
>  
> Würde mich über Hilfe freuen!

Hallo,

die Gruppe [mm] S_3 [/mm] ist ja sehr übersichtlich, und ihre Untergruppen sind noch übersichtlicher.

Daher kannst Du den Isomorphismus sogar so angeben, daß Du einfach sagst, welches Element auf welches abgebilde wird.

Zum Finden des Isomorphismus ist es nützlich, wenn man weiß, daß Elemente auf Elemente derselben Ordnung abgebildet werden, erzeugende Elemente auf erzeugende Elemente, neutrales auf neutrales.


Die Schilderung Deiner Aufgabe ist nun allerdings etwas geheimnisvoll.
Hast Du konkrete Untergruppen gegeben? Wenn ja: warum verrätst Du nicht, welche?
Ein Staatsgeheimnis können die Untergruppen von [mm] S_3 [/mm] ja eigentlich nicht sein...

Gruß v. Angela



Bezug
                
Bezug
Homomorphismus - Beispiel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:21 Mi 01.07.2009
Autor: mathe-tu-muenchen

Danke für die Antwort. Nein also eine konkrete Untergruppe ist nicht gegeben. Ich sollte jedoch eine angeben, damit das alles mit der Angabe übereinstimmt, so qasi zum verständnis...

Bezug
                        
Bezug
Homomorphismus - Beispiel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Mi 01.07.2009
Autor: angela.h.b.


> Danke für die Antwort. Nein also eine konkrete Untergruppe
> ist nicht gegeben. Ich sollte jedoch eine angeben, damit
> das alles mit der Angabe übereinstimmt, so qasi zum
> verständnis...

Hallo,

na, dann schreib doch erstmal alle Untergruppen hin, und schau Dich dann um, welche für  Isomorphie überhaupt infrage kommt.

Im Moment fächeln wir hier im luftleeren Raum.

Gruß v. Angela






Bezug
                                
Bezug
Homomorphismus - Beispiel: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:29 Mi 01.07.2009
Autor: mathe-tu-muenchen

OK,

ich nehme, z.B. die zwei Gruppen U1 = [mm] (\IR^+,*) [/mm] und U2 = [mm] (\IR,+). [/mm] Als Abbildung nehme ich den Logarithmus.

OK, mit dem Logarithmus habe ich jetzt einen Isomorphismus zwischen den Gruppen U1 und U2, wegen ln(a*b) = ln(a) + ln(b).

Jetzt müsste ich jedoch noch eine symmetrische Gruppe S3 finden, die eben die Gruppen U1 und U2 als Untergruppen enthält. Ich bin mir hier jetzt eben nicht so ganz sicher ob das überhaupt mit dem Logarithmus dann noch funktioniert.

Wie schreibt man z.B. "als Abbildung nehme ich den Logarithmus" eigentlich formal an? Ich habe ja die Abbildung [mm] \varphi [/mm] : G -> H. Wenn [mm] \varphi [/mm] (a*b) = [mm] \varphi [/mm] (a) + [mm] \varphi [/mm] (b) gilt, dann habe ich einen Homomorphismus. Nur wo schreibt man da dazu, dass es sich bei der Abbildung [mm] \varphi [/mm] um den log handelt?

danke!

Bezug
                                        
Bezug
Homomorphismus - Beispiel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:45 Mi 01.07.2009
Autor: angela.h.b.


> OK,
>  
> ich nehme, z.B. die zwei Gruppen U1 = [mm](\IR^+,*)[/mm] und U2 =
> [mm](\IR,+).[/mm] Als Abbildung nehme ich den Logarithmus.

Moment! Jetzt wird mir schwindelig:

ging es nicht um Untergruppen von [mm] S_3? [/mm]


>  
> OK, mit dem Logarithmus habe ich jetzt einen Isomorphismus
> zwischen den Gruppen U1 und U2, wegen ln(a*b) = ln(a) +
> ln(b).
>  
> Jetzt müsste ich jedoch noch eine symmetrische Gruppe S3
> finden, die eben die Gruppen U1 und U2 als Untergruppen
> enthält.

Hä?

Das wird schwerlich gelingen, da Deine Gruppen [mm] U_1 [/mm] und [mm] U_2 [/mm] doch mit völlig verschiedenen Verknüpfungen sind...

Außerdem ist ihre Mächtigkeit verflixt groß, gemessen an der von [mm] S_3. [/mm]

Weißt Du überhaupt, was [mm] S_3 [/mm] ist?

Vielleicht fehlt mir ein wenig der Überblick, ich hab' es bisher so verstanden, als ginge es um die Isomorphie gewisser Untergruppen von [mm] S_3. [/mm]

Gruß v. Angela









Bezug
                                                
Bezug
Homomorphismus - Beispiel: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:48 Mi 01.07.2009
Autor: mathe-tu-muenchen

Ja S3 soll eine symmetrische Gruppe sein, das hat irgendetwas mit Permutationen zu tun. Ich hab das aber noch nicht so ganz verstanden.

Bezug
                                                        
Bezug
Homomorphismus - Beispiel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Mi 01.07.2009
Autor: angela.h.b.


> Ja S3 soll eine symmetrische Gruppe sein, das hat
> irgendetwas mit Permutationen zu tun. Ich hab das aber noch
> nicht so ganz verstanden.

Hallo,

ja, dann verstehe ich überhaupt nicht, wieso Du diese Aufgabe postest.
Was soll das Gerede von Isomorphismus, wenn Du noch nichtmal weißt, was [mm] S_3 [/mm] ist?

Na gut, jetzt wissen wir, wo es hängt.
"Irgendwas mit Permutation" ist etwas allerdings dürftig als Grundlage.
Ich schlage vor, daß Du erstmal herausfindest, was es mit [mm] S_3 [/mm] auf sich hat - das kann man ja nachlesen.

Danach können wir uns hier gerne weiter unterhalten - aber eine Basis fürs Gespräch sollte gelegt sein.

Falls Du Lehramtstudent bist (und eigentlich auch sonst), ist es sehr lehr- und hilfreich, die Verbindung zwischen [mm] S_3 [/mm] und Dreiecken zu knüpfen.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de