www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Homomorphismus: Produkt
Homomorphismus: Produkt < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismus: Produkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 So 10.06.2012
Autor: el_grecco

Aufgabe
Gegeben sind drei Algebren A, B, C und zwei Homomorphismen $h:A [mm] \to [/mm] B$ und $g:A [mm] \to [/mm] C.$ Die Produkt-Algebra ist wie folgt defniert:

Zwei algebraische Strukturen mit gleicher Signatur [mm] $A=\langle S,f_1,...,f_n \rangle$ [/mm] und [mm] $B=\langle T,g_1,...,g_n \rangle$ [/mm] definieren das Produkt $A [mm] \times [/mm] B := [mm] \langle [/mm] S [mm] \times [/mm] B, [mm] k_1, [/mm] ..., [mm] k_n \rangle$ [/mm] mit punktweise konstruierten Operationen: [mm] $k_i((x_1, y_1), [/mm] ..., [mm] (x_{m_i}, y_{m_i})) [/mm] := [mm] (f_i(x_1, [/mm] ..., [mm] x_{m_i}), g_i(y_1, [/mm] ..., [mm] y_{m_i})).$ [/mm]

Zeigen Sie, dass $f:A [mm] \to [/mm] (B [mm] \times [/mm] C),$ definiert durch $f(x) := (h(x), [mm] g(x)),\!\$ [/mm] ein Homomorphismus ist.

Hallo,

ich habe bei dieser Aufgabe leider einige Probleme...

In der Definition der Produkt-Algebra heißt es oben "...definieren das Produkt $ A [mm] \times [/mm] B := [mm] \langle [/mm] S [mm] \times [/mm] B, [mm] k_1, [/mm] ..., [mm] k_n \rangle [/mm] $..."; müsste das in der Klammer nicht $S [mm] \times [/mm] T$ statt $S [mm] \times [/mm] B$ heißen?

Davon mal abgesehen versuche ich schon die ganze Zeit die Definition des Homomorphismus auf diese Aufgabe anzuwenden, aber ich komme einfach auf keinen grünen Zweig (das Ganze ist wirklich zu abstrakt für mich). Es wäre sehr nett, wenn jemand bitte den Anfang aufschreiben könnte.

Vielen Dank!

Gruß,
el_grecco


        
Bezug
Homomorphismus: Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 07:56 Mo 11.06.2012
Autor: felixf

Moin!

> Gegeben sind drei Algebren A, B, C und zwei Homomorphismen
> [mm]h:A \to B[/mm] und [mm]g:A \to C.[/mm] Die Produkt-Algebra ist wie folgt
> defniert:
>  
> Zwei algebraische Strukturen mit gleicher Signatur
> [mm]A=\langle S,f_1,...,f_n \rangle[/mm] und [mm]B=\langle T,g_1,...,g_n \rangle[/mm]
> definieren das Produkt [mm]A \times B := \langle S \times B, k_1, ..., k_n \rangle[/mm]
> mit punktweise konstruierten Operationen: [mm]k_i((x_1, y_1), ..., (x_{m_i}, y_{m_i})) := (f_i(x_1, ..., x_{m_i}), g_i(y_1, ..., y_{m_i})).[/mm]
>  
> Zeigen Sie, dass [mm]f:A \to (B \times C),[/mm] definiert durch [mm]f(x) := (h(x), g(x)),\!\[/mm]
> ein Homomorphismus ist.
>  Hallo,
>  
> ich habe bei dieser Aufgabe leider einige Probleme...
>  
> In der Definition der Produkt-Algebra heißt es oben
> "...definieren das Produkt [mm]A \times B := \langle S \times B, k_1, ..., k_n \rangle [/mm]...";
> müsste das in der Klammer nicht [mm]S \times T[/mm] statt [mm]S \times B[/mm]
> heißen?

Ja, muss es. Wenn du das so in deinen Mitschriften stehen hast, hast du es entweder falsch abgeschrieben, oder es stand falsch an der Tafel :)

> Davon mal abgesehen versuche ich schon die ganze Zeit die
> Definition des Homomorphismus auf diese Aufgabe anzuwenden,
> aber ich komme einfach auf keinen grünen Zweig (das Ganze
> ist wirklich zu abstrakt für mich). Es wäre sehr nett,
> wenn jemand bitte den Anfang aufschreiben könnte.

"Homomorphismus" bedeutet doch, dass die Funktion mit allen Operationen kompatibel ist.

Seien $S$, $T$ und $U$ die zugrundeliegenden Mengen von $A$, $B$ und $C$. Nimm dir eine $m$-stellige Operation $a : [mm] S^m \to [/mm] S$ auf $A$ sowie die "zugehoerigen" Operationen $b : [mm] T^m \to [/mm] T$ auf $B$ und $c : [mm] U^m \to [/mm] M$ auf $C$.

Sei $d : (S [mm] \times T)^m \to [/mm] S [mm] \times [/mm] T$ die entsprechende Operation auf dem Produkt $B [mm] \times [/mm] C$. Diese ist wie oben durch [mm] $d((y_1, z_1), \dots, (y_m, z_m)) [/mm] = [mm] (b(y_1, \dots, y_m), c(z_1, \dots, z_m))$ [/mm] definiert.

Damit $f : A [mm] \to [/mm] (B [mm] \times [/mm] C)$ ein Homomorphismus ist, muss ja fuer alle [mm] $x_1, \dots, x_m \in [/mm] S$ gelten [mm] $f(a(x_1, \dots, x_m)) [/mm] = [mm] d(f(x_1), \dots, f(x_m))$. [/mm]

Jetzt versuch erstmal das nachzuvollziehen was ich geschrieben hab. Dann (wenn du es verstanden hast) setze die Definitionen in die Homomorphismusgleichung ein und zeigst, dass beide Seiten gleich sind.  Dazu darfst (musst!) du benutzen, dass $g$ und $h$ Homomorphismen sind, das also etwa fuer [mm] $y_1, \dots, y_m \in [/mm] S$ gilt [mm] $h(a(y_1, \dots, y_m)) [/mm] = [mm] b(h(y_1), \dots, h(y_m))$. [/mm]

Wenn du das ganze mal in eine etwas einfachere Sprache uebersetzen willst, nimm $m = 2$, $a(x, y) = x + y$, $b(x, y) = x [mm] \oplus_1 [/mm] y$, $c(x, y) = x [mm] \oplus_2 [/mm] y$. Schreibe alles mit diesen "expliziten" Operationen aus und es sollte dir bekannt vorkommen...

LG Felix


Bezug
                
Bezug
Homomorphismus: Produkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mo 11.06.2012
Autor: el_grecco

Moin' Felix,

Danke für die Hilfe, jetzt ist es mir klarer geworden.
Der Fehler war leider so auf dem Blatt (neben einigen sprachlichen Fehlern) und ich habe dadurch einiges an Zeit verloren. Heute kommt die Musterlösung raus und wenn ich noch Fragen haben sollte, stelle ich sie hier. ;-)

Gruß
el_grecco


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de