Homomorphismus selbstinv. Gr. < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:26 So 04.11.2012 | Autor: | Studi91 |
Aufgabe | Sei [mm] V_{4} [/mm] := {1,a,b,ab} die Kleinsche Vierergruppe, H eine weitere Gruppe und f: [mm] V_{4} \to [/mm] H ein Homomorphismus. Beschreibe alle möglichen Bilder Im(f). |
Hallo,
ich soll obenstehende Aufgabe bearbeiten, weiß aber ehrlich gesagt nicht so genau wie die Aufgabe gemeint ist.
Ich habe mir gedacht, dass bei einem Homomorphismus inverse Elemente wieder auf invere Elemente abgebildet werden. In [mm] V_{4} [/mm] sind alle Elemente selbstinvers, d.h. alle Elemente sind nach der Abbildung auch wieder selbstinvers. Also muss die Gruppe H selbstinvers sein. Alle Gruppen die ich kenne, die 4 Elemente haben und selbstinvers sind, sind die [mm] V_{4}, D_{2} [/mm] und [mm] \IZ/2\times\IZ/2. [/mm] Diese sind zudem noch isomorph. Macht es jetzt Sinn zu sagen, dass nur eine Abbildung zwischen [mm] V_{4} [/mm] und [mm] D_{2} [/mm] bzw. [mm] \IZ/2\times\IZ/2 [/mm] möglich ist und dann bei den 2 Abbildungen die Bilder aufzuschreiben?
Vielleicht liege ich aber auch damit völlig daneben oder die Aufgabe ziehlt auf etwas anderes ab. Deswegen wäre ich für deine kleine Hilfestellung sehr dankbar.
Viele Grüße
|
|
|
|
moin,
Dein Ansatz ist schon sehr schön, aber noch nicht ganz zu Ende gedacht.
Wäre dein Homomorphismus injektiv, so wäre das Bild isomorph zu [mm] $V_4$ [/mm] (und [mm] $V_4,D_2,\IZ_2 \times \IZ_2$ [/mm] sind alle isomorph zueinander).
Aber was ist, wenn der Hom. nicht injektiv ist?
Was wäre zum Beispiel mit der Abbildung [mm] $\phi: V_4 \to [/mm] H, x [mm] \mapsto [/mm] e$, wobei $e$ das neutrale Element von $H$ bezeichne.
Überlege dir mal, wie viele Möglichkeiten es hier noch gibt andere Bilder zu erhalten und wozu diese wohl isomorph sein werden.
lg
Schadow
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Di 06.11.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|