www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Hubarbeit beim Pyramidenbau
Hubarbeit beim Pyramidenbau < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hubarbeit beim Pyramidenbau: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:13 So 13.01.2008
Autor: Delija

Aufgabe
Ein Ameisenhaufen aus sandigem Material (Dichte 1600kg/m³) hat die Form eines Kegelstumpfes. Der Grundflächenradius beträgt 1m, die Höhe beträgt ebenfalls 1m. Der Neigungswinkel der Böschung ist 60°. Welche Hubarbeit verrichteteten die Ameisen beim Bau?  

Hallo,
Ich muss ein Referat in Mathe über diese Aufgabe halten. Weil ich aber keine Lösung zu habe, wollte ich mal wissen, ob jemand drüber gucken könnte, ob das richtig so ist und ob man das überhaupt so rechnen kann. Wäre wirklich total nett, wenn mir jemand helfen kann!Es ist wichtig!


Meine Lösung:
Ich habe zuerst die Hubarbeit der oberen, kleineren Fläche des Kegelstupfes ausgerechnet.
r2 habe ich ausgerechnet indem ich erst die schräge Wand s des kegels mit dem sin ausgerechnet habe und dann mit dem Pythagoras r2:
r2 = 0,44m

Volumen des Zylinders:
V=pi*r2²*dh

Gewichtskraft des Zylinders:
Fx =m*g
Fx=Vx*p*g
Fx = (pi *r2² *dh)*p*g

Hubarbeit für zylinder:
Wx=Fx *h
Wx=pi *r²*dh*p*g*h

Kegelstumpf:
W=  
[pi*r²*p*g*h]
(1/2* (pi*0,44² *p*g*h)²)
(1/2* (pi*0,44² *1600*9,81*1)²)-(1/2* (pi*0,44² *1600*9,81*0)²)

W=45567839,27 J

Ist das richtig so?

Vielen Dank im vorraus!!!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
www.uni-protokolle.de
Aber keine Antwort bekommen.



        
Bezug
Hubarbeit beim Pyramidenbau: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 So 13.01.2008
Autor: Xafra

Ich glaube du hast einen Fehler gemacht. (Fehlende Genauigkeit!)
wenn ich das so durchrechne, dann komm ich für [mm] r_{2}= [3-\wurzel{3}]/3=0,422649731m [/mm]
den Rest werde ich mir noch genauer ansehen!
Wäre vielleicht hilfreich, wenn du die einzelnen Variablen noch benennen würdest ;)
Danke!

Bezug
        
Bezug
Hubarbeit beim Pyramidenbau: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 So 13.01.2008
Autor: rainerS

Hallo!

Erst einmal herzlich [willkommenmr]

> Ein Ameisenhaufen aus sandigem Material (Dichte 1600kg/m³)
> hat die Form eines Kegelstumpfes. Der Grundflächenradius
> beträgt 1m, die Höhe beträgt ebenfalls 1m. Der
> Neigungswinkel der Böschung ist 60°. Welche Hubarbeit
> verrichteteten die Ameisen beim Bau?
> Hallo,
>  Ich muss ein Referat in Mathe über diese Aufgabe halten.
> Weil ich aber keine Lösung zu habe, wollte ich mal wissen,
> ob jemand drüber gucken könnte, ob das richtig so ist und
> ob man das überhaupt so rechnen kann. Wäre wirklich total
> nett, wenn mir jemand helfen kann!Es ist wichtig!
>  
>
> Meine Lösung:
> Ich habe zuerst die Hubarbeit der oberen, kleineren Fläche
> des Kegelstupfes ausgerechnet.
> r2 habe ich ausgerechnet indem ich erst die schräge Wand s
> des kegels mit dem sin ausgerechnet habe und dann mit dem
> Pythagoras r2:
> r2 = 0,44m

Ich habe auch 0,422m heraus, aber das ist wohl ein Rundungsfehler.

> Volumen des Zylinders:
> V=pi*r2²*dh

Du gehst also von einem sehr dünnen Zylinder mit Radius [mm]r_2[/mm] und hähe dh aus. ok.

> Gewichtskraft des Zylinders:
> Fx =m*g
> Fx=Vx*p*g
> Fx = (pi *r2² *dh)*p*g
>
> Hubarbeit für zylinder:
> Wx=Fx *h
> Wx=pi *r²*dh*p*g*h

Soweit auch ok.

> Kegelstumpf:
> W=  
> [pi*r²*p*g*h]

Diese Formel habe ich nicht verstanden. Du musst doch hier über die Variable h integrieren, wobei der Radius von der Höhe linear abhängt. Wenn der Radius oben (in Höhe h=H=1m) [mm]r_2[/mm] und unten (in Höhe h=0) [mm]r_0[/mm] ist, so ist allgemein der Radius in Höhe h:

[mm] r = r_0 - \bruch{h}{H}(r_0-r_2) [/mm]

Und die Hubarbeit insgesamt:

[mm] W = \integral_0^H {\pi r^2 \rho g h dh} = \pi\rho g\integral_0^H {\left(r_0-\bruch{h}{H} (r_0-r_2)\right)^2 h dh} [/mm].

Viele Grüße
   Rainer

Bezug
                
Bezug
Hubarbeit beim Pyramidenbau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 So 13.01.2008
Autor: Delija

Erst einmal herzlich [willkommenmr]
Danke schön! bin übrigens begeistert, dass ich so schnell Antworten bekommen habe!

> Kegelstumpf:

> W=  
> [pi*r²*p*g*h]

Diese Formel habe ich nicht verstanden. Du musst doch hier über die Variable h integrieren, wobei der Radius von der Höhe linear abhängt. Wenn der Radius oben (in Höhe h=H=1m)  und unten (in Höhe h=0)  ist, so ist allgemein der Radius in Höhe h:


Oh, da habe ich versucht das Integralzeichen einzufügen. Das hat aber wohl nicht ganz geklappt.
Hier noch einmal:

[mm] w=\integral_{0}^{H}{\pi \*0,42²\*p\*g\*h dh} [/mm]

Wenn ich mir deines angucke, müsste meines dann aber falsch sein und ich denke ich verstehe auch warum.
DU hast das doch mit der Formel für Rotationskörper gemacht, wenn ich das richtig verstehe.

Ach so:
Die Zeichen stehen für
g=Erdbeschleunigung=9,81
p=Dichte
m=Masse







Bezug
                        
Bezug
Hubarbeit beim Pyramidenbau: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 So 13.01.2008
Autor: leduart

Hallo
Nein! rainer hat nur eingesetzt, dass r von h abhängt, und du hast über die ganze Höhe nur r=0,44 genommen, deine Ameisen bauen also -ausser dem Fehler beim integrieren- eine Säule mit dem Radius 0,44!
Gruss leduart

Bezug
        
Bezug
Hubarbeit beim Pyramidenbau: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 So 13.01.2008
Autor: leduart

Hallo
Du hast einen Fehler gemacht, oder ich versteh dein Vorgehen nicht!
1. richtig ist, dass die Arbeit für eine Schicht in Höhe h:
[mm] W=m_h*g*h [/mm]  mit [mm] m_h=V_h*\rho=pi*r_h^2*dh*\rho [/mm]
aber [mm] r_h [/mm] hast du nicht ausgerechnet! ich denk es ist am einfachsten
[mm] r_h [/mm] =(1-tan30*h)m
du hast die 0,44 (ich hab 0,423 raus) überall genommen.
dann musst du das von h=0 bis h=1m integrieren. (dabei aber bitte alle Konstanten vor das Integral ziehen! da liegt dein zweiter Fehler. Ich denk du hast irgendein Integral gebildet über h:
aber [mm] \integral_{a}^{b}{A*h dh}\ne 1/2(Ah)^2 [/mm]  sondern
[mm] \integral_{a}^{b}{A*h dh}=A*\integral_{a}^{b}{h dh} [/mm]
zur Kontrolle: die Ameisen müssen sicher weniger Arbeit leisten, als wenn sie die ganze masse in die halbe Höhe bringen.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de