www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Hyperebene
Hyperebene < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 So 26.04.2009
Autor: kuemmelsche

Hallo zusammen,

in der Definition die mir vorliegt steht drinne, dass die Hyperebene eindeutig durch die Punkte die sie erzeugen, bestimmt ist.

Angenommen die Punkte [mm] A_1 [/mm] bis [mm] A_n [/mm] erzeugen eine n-1-dimensionale Hyperebene, da fehlt ja im vergleich zum Ursprungsraum nur der Ursprung [mm] A_0. [/mm]

Ist nur genau der Unterraum die Hyperebene, dem die [mm] A_0 [/mm] "fehlt", oder gibt es n+1 verschiedene Hyperebenen?

Ich denke ja es gibt mehrere, aber das geht aus meiner Definition nicht genau heraus. Auch andere Definitionen im Netz können diese Frage nicht endgültig klären.

Danke im Voraus!

lg Kai

        
Bezug
Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Mo 27.04.2009
Autor: angela.h.b.

Hallo,

wenn Du im Raum der Dimension n bist, dann sind die Hyperebenen die Teilräume der Dimension n-1.

Wenn Ihr gerade bei den affinen Räumen seid, dann sind's halt affine Teilräume der Dimension n-1.

Für n=3 die "normalen" Ebenen  (eindeutig durch 3 nichtkollineare Punkte),
für n=3 sind die Hyperebenen die Geraden (eindeutig bestimmt durch 2 Punkte),
für n=4 sind die Hyperebenen die 3-dimensionalen Teilräume (eindeutig bestimmt durch 4 Punkte).

Es gibt also nicht nur eine Hyperebene.

> in der Definition die mir vorliegt steht drinne, dass die
> Hyperebene eindeutig durch die Punkte die sie erzeugen,
> bestimmt ist.
>  
> Angenommen die Punkte [mm]A_1[/mm] bis [mm]A_n[/mm] erzeugen eine
> n-1-dimensionale Hyperebene, da fehlt ja im vergleich zum
> Ursprungsraum nur der Ursprung [mm]A_0.[/mm]

Nun, der Ursprungsraum kann doch durch n sehr verschiedene Punkte erzeugt werden. Da gibt es ja meist nicht nur eine Möglichkeit.

> Ist nur genau der Unterraum die Hyperebene, dem die [mm]A_0[/mm]
> "fehlt", oder gibt es n+1 verschiedene Hyperebenen?

Im [mm] \IR^n [/mm] gibt es viel mehr als n+1 Hyperebene, ich denke, daß dies oben deutlich geworden ist.
Wieso sollten das endlich viele sein?


> Ich denke ja es gibt mehrere, aber das geht aus meiner
> Definition nicht genau heraus. Auch andere Definitionen im
> Netz können diese Frage nicht endgültig klären.

Wenn Du Dir merkst Hyperebene=Unterraum der Dimension n-1, dann kann eigentlich nichts mehr schiefgehen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de