www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Hypothesentest
Hypothesentest < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypothesentest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:19 Mo 06.02.2006
Autor: Olli80

Aufgabe
Für eine Zufallsvariable X mit den zwei Ausprägungen 0 und 1 gilt, dass die Ausprägung x = 1 mit der Wahrscheinlichkeit p = 0,2 zutrifft. Die Realisation der Zufallsvariablen Y sind die Summe n unabhängiger Zufallsvariablen  [mm] X_{i} [/mm] mit i = 1,...,n die wie X verteilt sind.

a: Eine Stichprobe vom Umfang n=40 liefert y = 13. Testen Sie mit einer Vertrauenswahrscheinlichkeit von 97%, ob Sie aufgrund dieses Ergebnisses die Nullhypothese  [mm] H_{0}: [/mm] P = 0,2 ablehnen könne!

Hallo,

ich habe diese Frage noch auf keiner anderen Seite im Internet gestellt.

Meine Gegenhypothese [mm] H_{1} [/mm] lautet ja p = 0,8. Aber wie rechne ich weiter?

Viele Grüße

Olli

        
Bezug
Hypothesentest: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Di 07.02.2006
Autor: Astrid

Hallo Olli,

> Für eine Zufallsvariable X mit den zwei Ausprägungen 0 und
> 1 gilt, dass die Ausprägung x = 1 mit der
> Wahrscheinlichkeit p = 0,2 zutrifft. Die Realisation der
> Zufallsvariablen Y sind die Summe n unabhängiger
> Zufallsvariablen  [mm]X_{i}[/mm] mit i = 1,...,n die wie X verteilt
> sind.
>  
> a: Eine Stichprobe vom Umfang n=40 liefert y = 13. Testen
> Sie mit einer Vertrauenswahrscheinlichkeit von 97%, ob Sie
> aufgrund dieses Ergebnisses die Nullhypothese  [mm]H_{0}:[/mm] P =
> 0,2 ablehnen könne!
>  Hallo,
>  
> Meine Gegenhypothese [mm]H_{1}[/mm] lautet ja p = 0,8. Aber wie
> rechne ich weiter?


Nein, deine Nullhypothese ist richtig:
[mm] $H_0: \, [/mm] p=0,2$,
aber die Gegenhypothese ist,
[mm] $H_1: \, [/mm] p [mm] \not= [/mm] 0,2$

Ich verstehe die Aufgabe so:

Wann würdest du denn die Nullhypothese ablehnen? Genau dann, wenn unter der Annahme, dass die Nullhypothese gilt ist, die Wahrscheinlichkeit für eine Realisierung $y [mm] \geq [/mm] 13$ kleiner ist als [mm] \alpha, [/mm] wobei [mm] $\alpha [/mm] = 1-0,97$ ist.

Also ablehnen, wenn gilt:
[mm]P_{H_0}(Y \geq 13) < 0,03 \, \Leftrightarrow \, P_{H_0}(Y \leq 12) \geq 0,97[/mm].

Dabei gilt $Y [mm] \sim [/mm] B(40,0,2)$, falls die Nullhypothese zutrifft.

Viele Grüße
Astrid

Bezug
                
Bezug
Hypothesentest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 Mi 08.02.2006
Autor: Olli80

Danke,

das hat mir weiter geholfen.

Olli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de