www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Hypothesentest Frage
Hypothesentest Frage < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypothesentest Frage: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 17.09.2013
Autor: starki

Aufgabe
Angenommen, ich habe eine Aufgabenstellung, habe die Nullhypothese und die Gegenhypothese herausbekommen oder sie steht schon da.
Meine Stichprobe sein jetzt n.

Also [mm] H_0: [/mm] p [mm] \le p_0, H_1: [/mm] p > [mm] p_0 [/mm]

So jetzt habe ich die Nullhypothese und die Gegenhypothese.

Was genau sagt mir die Aussage P(X = k), P(X [mm] \le [/mm] k), P(X [mm] \ge [/mm] k)?

Also wenn ich richtig gedacht habe, dann sagt mir P(X = k) die Wahrscheinlichkeit, dass ich mich mit der Nullhypothese irre, oder? Oder liege ich falsch?

Das gehört leider noch zu den Dingen, die ich nicht ganz durchdrungen habe ... :-(


        
Bezug
Hypothesentest Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 Mi 18.09.2013
Autor: HJKweseleit


> Angenommen, ich habe eine Aufgabenstellung, habe die
> Nullhypothese und die Gegenhypothese herausbekommen oder
> sie steht schon da.
>  Meine Stichprobe sein jetzt n.
>  
> Also [mm]H_0:[/mm] p [mm]\le p_0, H_1:[/mm] p > [mm]p_0[/mm]
>  So jetzt habe ich die Nullhypothese und die
> Gegenhypothese.
>  
> Was genau sagt mir die Aussage P(X = k), P(X [mm]\le[/mm] k), P(X
> [mm]\ge[/mm] k)?
>  
> Also wenn ich richtig gedacht habe, dann sagt mir P(X = k)
> die Wahrscheinlichkeit, dass ich mich mit der Nullhypothese
> irre, oder? Oder liege ich falsch?

Nein, diese drei Wahrscheinlichkeiten P(X = k), P(X [mm]\le[/mm] k), P(X [mm]\ge[/mm] k) haben mit den Hypothesen direkt nichts zu tun.

Beispiel:

X = Augenzahl beim Laplace-Würfel, k=4. Dann bedeuten

P(X = k)=P(X=4)=1/6 die Wahrscheinlichkeit, dass X, also die Augenzahl, =4 ist.

P(X [mm]\le[/mm] k)=P(X [mm]\le[/mm] 4)= 1/2 die Wahrscheinlichkeit, dass X, also die Augenzahl, <4 ist, also 1, 2 oder 3.

P(X [mm]\ge[/mm] k)=P(X [mm]\ge[/mm] 4)= 1/3 die Wahrscheinlichkeit, dass X, also die Augenzahl, >4 ist, also 5 oder 6.

>
> Das gehört leider noch zu den Dingen, die ich nicht ganz
> durchdrungen habe ... :-(
>  


Bezug
        
Bezug
Hypothesentest Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 03:51 Mi 18.09.2013
Autor: tobit09

Hallo starki,


> Angenommen, ich habe eine Aufgabenstellung, habe die
> Nullhypothese und die Gegenhypothese herausbekommen oder
> sie steht schon da.
>  Meine Stichprobe sein jetzt n.

Was meinst du damit?

> Also [mm]H_0:[/mm] p [mm]\le p_0, H_1:[/mm] p > [mm]p_0[/mm]

Ich glaube, es wäre einfacher auf dich einzugehen, wenn du ein vollständiges Beispiel posten würdest.

Ich gehe mal davon aus, dass irgendeine mit p indizierte Familie von möglichen Verteilungen [mm] $P_p$ [/mm] gegeben ist.

Die Vorstellung dahinter ist: Wir wissen nicht, welche dieser Verteilungen die "wahre" Verteilung ist und können nur aufgrund unserer Stichprobe Mutmaßungen über die wahre Verteilung anstellen.


> Was genau sagt mir die Aussage P(X = k), P(X [mm]\le[/mm] k), P(X
> [mm]\ge[/mm] k)?

Ich vermute, dass die Zufallsvariable $X$ den beobachteten Wert der Stichprobe beschreibt.

In der von mir skizzierten statistischen Situation gibt es gar nicht "die eine" Verteilung $P$, sondern zu jedem möglichen Parameterwert p eine Verteilung [mm] $P_p$. [/mm]

[mm] $P_p(X=k)$ [/mm] hat dann folgende Bedeutung: Angenommen, $p$ ist der "wahre" Parameter. Dann werden wir mit Wahrscheinlichkeit [mm] $P_p(X=k)$ [/mm] bei der Stichprobe den Wert $k$ erhalten.


> Also wenn ich richtig gedacht habe, dann sagt mir P(X = k)
> die Wahrscheinlichkeit, dass ich mich mit der Nullhypothese
> irre, oder? Oder liege ich falsch?

Leider letzteres. Es gibt gar nicht die Wahrscheinlichkeit, sich mit der Nullhypothese zu irren! Die Vorstellung ist folgende: Es gibt einen (unbekannten) "wahren" Parameter $p$. Entsprechend ist die Nullhypothese "in Wahrheit" entweder wahr oder falsch (und nicht mit einer bestimmten Wahrscheinlichkeit wahr oder falsch).

Im Folgenden nehme ich an, dass wir uns für einen bestimmten Test entschieden haben.

Was wir dann angeben können, ist zu jedem einzelnen Parameter $p$ unter der Annahme, er sei der "wahre" Parameter, die Wahrscheinlichkeit, dass wir eine Stichprobe erhalten, für die der Test bei der Nullhypothese bleibt.

Für [mm] $p>p_0$ [/mm] ist das die Wahrscheinlichkeit, irrtümlich bei der Nullhypothese zu bleiben, wenn $p$ der wahre Parameter ist.

Für [mm] $p\le p_0$ [/mm] ist das die Wahrscheinlichkeit, richtigerweise bei der Nullhypothese zu bleiben, wenn $p$ der wahre Parameter ist.


Ich denke, gezielter kann man helfen, wenn du die ein vollständiges Beispiel postest und dazu Fragen stellst.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de