IMO-Auswahlklausur < Wettbewerbe < Schule < Mathe < Vorhilfe
|
|
Status: |
(Frage) beantwortet | Datum: | 22:36 Di 08.03.2005 | Autor: | Hanno |
Hallo Samuel!
Wegen [mm] $a^2\equiv 0\pmod{4}\vee a^2\equiv 1\pmod [/mm] {4}, [mm] a\in \IZ$ [/mm] müssen die Paritäten der $a,b,c,d$ übereinstimmen. Seien $a,b,c,d$ ungerade. Folglich gibt es [mm] $a_1,b_1,c_1,d_1\in\IZ$ [/mm] mit [mm] $2a_1+1=a, 2b_1+1=b, 2c_1+1=c, 2d_1+1=d$. [/mm] Daraus folgt [mm] $4^{n}\cdot 7=4a_1^2+4a_1+1+4b_1^2+4b_1+1+4c_1^2+4c_1+1+4d_1^2+4d_1+1\gdw 4^{n-1}\cdot 7=a_1(a_1+1)+b_1(b_1+1)+c_1(c_1+1)+d_1(d_1+1)+1$. [/mm] Für $n>1$ führt dies zu einem Widerspruch bei Betrachtung der Reste bei Division durch 4. Für $a,b,c,d$ gerade ergibt sich mit [mm] $2a_1=a,...$ [/mm] die Gleichung [mm] $4^{n-1}\cdot 7=a_1^2+b_1^2+c_1^2+d_1^2$, [/mm] woraufhin sich gleiches Argument nochmals anwenden lässt.
Auf Grund des Widerspruches für ungerade $a,b,c,d$ bei $n>1$ muss letzterer Schritt, ausgehend von der Gleichung
[mm] $4^n\cdot 7=a^2+b^2+c^2+d^2$
[/mm]
wenigstens $n-1$ mal durchgeführt werden, was zu
[mm] $4\cdot 7=a_{n-1}^2+b_{n-1}^2+c_{n-1}^2+d_{n-1}^2$
[/mm]
führt. Dabei sind [mm] $2^{n-1}\cdot a_{n-1}=a\Rightarrow a^2=4^{n-1}\cdot a_{n-1}^2$ [/mm] resp. b,c,d. .
Es ist einzusehen, dass keine der ursprünglichen Quadratzahlen 0 sein kann. Wiederholung des zweiten Argumentes (das 1. ist für weniger als 4 Summanden nicht anzuwenden) führte zu 7 als eine Summe von $0,1,2,3$ Quadratzahlen - alle vier Fälle sind nicht möglich.
Folglich sind die [mm] $a_{n-1},b_{n-1},c_{n-1},d_{n-1}>0$ [/mm] und daher auch [mm] $a,b,c,d\geq 4^{n-1}$, [/mm] was zu zeigen war.
So, ich hoffe, dass das nun ein wenig besser ist und dass kein weiterer Schusselfehler mehr zu finden ist.
Liebe Grüße,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 06:24 Mi 09.03.2005 | Autor: | Hanno |
Hallo an alle!
Urgs! Heut ist mir doch glatt am Frühstückstisch eingefallen, dass ich schlicht und ergreifend den Fall $a,b,c,d$ ungerade vergessen habe. Klar, dass dann die Quadratsumme durch [mm] $4^{n-1}\cdot [/mm] 7$ teilbar ist. Ich werde die Aufgabe später nochmals versuchen.
Nichts für ungut.
Liebe Grüße,
Hanno
|
|
|
|
|
Hallo Hanno,
> Wegen [mm]a^2\equiv 0\pmod{4}\vee a^2\equiv 1\pmod {4}, a\in \IZ[/mm]
> müssen die Paritäten der [mm]a,b,c,d[/mm] übereinstimmen. Seien
> [mm]a,b,c,d[/mm] ungerade. Folglich gibt es [mm]a_1,b_1,c_1,d_1\in\IZ[/mm]
> mit [mm]2a_1+1=a, 2b_1+1=b, 2c_1+1=c, 2d_1+1=d[/mm]. Daraus folgt
> [mm]4^{n}\cdot 7=4a_1^2+4a_1+1+4b_1^2+4b_1+1+4c_1^2+4c_1+1+4d_1^2+4d_1+1\gdw 4^{n-1}\cdot 7=a_1(a_1+1)+b_1(b_1+1)+c_1(c_1+1)+d_1(d_1+1)+1[/mm].
> Für [mm]n>1[/mm] führt dies zu einem Widerspruch
Ich habs mit [mm] $a^2+b^2+c^2+d^2\equiv4 [/mm] mod8$ gemacht
>bei Betrachtung der
> Reste bei Division durch 4. Für [mm]a,b,c,d[/mm] gerade ergibt sich
> mit [mm]2a_1=a,...[/mm] die Gleichung [mm]4^{n-1}\cdot 7=a_1^2+b_1^2+c_1^2+d_1^2[/mm],
> woraufhin sich gleiches Argument nochmals anwenden lässt.
> Auf Grund des Widerspruches für ungerade [mm]a,b,c,d[/mm] bei [mm]n>1[/mm]
> muss letzterer Schritt, ausgehend von der Gleichung
> [mm]4^n\cdot 7=a^2+b^2+c^2+d^2[/mm]
> wenigstens [mm]n-1[/mm] mal
> durchgeführt werden, was zu
> [mm]4\cdot 7=a_{n-1}^2+b_{n-1}^2+c_{n-1}^2+d_{n-1}^2[/mm]
> führt.
> Dabei sind [mm]2^{n-1}\cdot a_{n-1}=a\Rightarrow a^2=4^{n-1}\cdot a_{n-1}^2[/mm]
> resp. b,c,d. .
> Es ist einzusehen, dass keine der ursprünglichen
> Quadratzahlen 0 sein kann. Wiederholung des zweiten
> Argumentes (das 1. ist für weniger als 4 Summanden nicht
> anzuwenden) führte zu 7 als eine Summe von [mm]0,1,2,3[/mm]
> Quadratzahlen - alle vier Fälle sind nicht möglich.
>
> Folglich sind die [mm]a_{n-1},b_{n-1},c_{n-1},d_{n-1}>0[/mm] und
> daher auch [mm]a,b,c,d\geq 4^{n-1}[/mm], was zu zeigen war.
>
aber hier kannst du direkter argumentieren. Zuerst gibst du für n=1 Lösungen an: z.b. (a,b,c,d)=(1,1,1,5). Und dann folgt induktiv mit dem Extremalprinzip, dass es kein kleinstes k>1 geben kann, das die Forderung nicht erfüllt. (Den Schritt fand ich so interessant). Denn dann würde es nach deiner Argumentation auch für k-1 nicht gelten - Widerspruch!
Im wesentlichen unterscheidet sich das zwar nicht von deiner Argumentation - ist aber kürzer
Gruß Samuel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:15 Mi 09.03.2005 | Autor: | Hanno |
Hallo Samuel!
Ja, die Idee ist wirklich toll. Dort das Extremalprinzip anzuwenden, ist sehr elegant. Danke für den Hinweis.
Liebe Grüße,
Hanno
|
|
|
|