www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - \IR auf \IR^_{2} abbilden
\IR auf \IR^_{2} abbilden < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

\IR auf \IR^_{2} abbilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 So 03.06.2007
Autor: TRANSLTR

Aufgabe
Kann eine Zahl z = [mm] 0.\overline{9} [/mm] von der Menge [mm] \IR [/mm] eindeutig auf ein Intervallpaar in der Menge [mm] \IR^{2} [/mm] abgebildet werden?
--> Methode: Einzelblockbildung

In [mm] \IR^{2} [/mm] kommen die Paare ( x,y ) vor, die bijektiv auf [mm] \IR [/mm] (z) abgebildet werden können.

z = [mm] 0.\overline{9} [/mm]
x = 0.1000......
y = 0.0000.....

Nach der einzelnen Blockbildungsmethode, nimmt man abwechselnd [mm] x_{1}, [/mm] dann [mm] y_{1}, [/mm] dann [mm] x_{2}, y_{2}....und [/mm] zusammen ergäbe das z = 0.1, was ja [mm] 0.\overline{9} [/mm] ist.

z = [mm] 0.\overline{9} [/mm]
x = [mm] 0.\overline{9}...... [/mm]
y = [mm] 0.\overline{9}..... [/mm]

Das ergäbe nach der Blockbildungsmethode z = [mm] 0.\overline{9}, [/mm] also auch 0.1.
Somit ist doch keine Bijektion möglich, oder? Also wäre hier die Einzelblockbildungsmethode ungeeignet!

Nun, es gibt diesen berühmten Beweis, den ich im Anhang raufgeladen habe. Es werden Blöcke gemacht bis zur nächsten 0 und nicht wie ich das oben gemacht habe, einfach Einzelblöcke ohne Berücksichtigung der 0. Diese Methode ist berühmt, also muss sie eine Bijektion ermöglichen. Doch ich sehe nicht ein, wieso es bei der anderen Methode geht und bei meiner nicht! :S

Anhang: Blöckenbildung bis zur nächstem 0!
[]Theorem

        
Bezug
\IR auf \IR^_{2} abbilden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 So 03.06.2007
Autor: Gonozal_IX

Hiho,

ok, daß es eine Bijektion von (0,1] auf (0,1] x (0,1] gibt, ist in deinem angehängten Beweis ja erklärt. Ich hoffe du hast den Beweis soweit verstanden.

Nun zu deiner Sache:

> z = [mm]0.\overline{9}[/mm]

meinst du damit 0.9 Periode 9 (mal in Worten)? Ich nehme es mal an, warum dein Beweis dann nicht funktioniert hat den Grund, daß [mm]0.\overline{9} = 1[/mm] gilt.


>  --> Methode: Einzelblockbildung

So wie ich das sehe meinst du mit Einzelblockbildung sowas in der Art:

Sei x = 0.3234423256.... , y = 0.13422345345 dann ergibt sich z, indem ich immer abwechselnd EINE Zahl von x und dann eine von y nehme, also würde z=0.3123344242... sein, stimmts soweit?

Gruß,
Gono.

Bezug
                
Bezug
\IR auf \IR^_{2} abbilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 So 03.06.2007
Autor: TRANSLTR

Jep. Den Beweis habe ich verstanden, z = [mm] 0.\overline{9} [/mm] bedeutet 0.999...usw periodisch, genau wie du sagst. Und das mit den Blöcken, da hast du auch recht!
Ich will abwechselnd x und y nehmen, anstatt diese Blöcke wie im Beweis zu machen. Aber dann ensteht genau der Widerspruch! 0.9999 = 1, deshalb gibts 2 Varianten :S --> Einblockmethode ist falsch!
Aber das würde doch auch bei der anderen Methode (im Beweis) das gleiche Problem auftauchen, nicht?


Bezug
                        
Bezug
\IR auf \IR^_{2} abbilden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 So 03.06.2007
Autor: Gonozal_IX

Hi,

du kannst [mm]z=0.\overline{9}[/mm] nicht betrachten, weil es die Zahl so nicht gibt, sondern 1 ist, d.h. du müsstest den Fall z=1 betrachten und für den haut es doch wieder hin.

MfG,
Gono.

Bezug
                                
Bezug
\IR auf \IR^_{2} abbilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 So 03.06.2007
Autor: TRANSLTR

Heisst das für den Beweis im Link würde es mit 0.9999 ... auch nicht gehen? Hätte man dort nicht eine eindeutige Bijektion?

Bezug
                                        
Bezug
\IR auf \IR^_{2} abbilden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 So 03.06.2007
Autor: Gonozal_IX

Also wenn du für den Beweis im Link den Fall 0.999..... betrachtest, müsstest du auch auf Murks kommen, weil es diese Zahl wie gesagt nicht wirklich gibt, sondern du den Fall z=1 betrachten musst.
Probiers aus :-)

Bezug
                                                
Bezug
\IR auf \IR^_{2} abbilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 So 03.06.2007
Autor: TRANSLTR

Bist du sicher? Ok, in diesem Fall, danke noch :) :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de