www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ideale
Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:54 Di 13.12.2016
Autor: nightsusi

Aufgabe
Seien [mm] R=\IZ [/mm] ein kommutativer Ring und [mm] I=m\IZ ,J=n\IZ [/mm] zwei Ideale, wobei [mm] m,n\ge2 [/mm] zwei verschiedene  ganze Zahlen sind.

Bestimmen Sie I+J, I [mm] \cap [/mm] J und I*J
Wann gilt IJ=I+J

Hallo zusammen, ich habe mir bis jetzt folgendes gedacht:

[mm] I\cap [/mm] J:
Der Schnitt [mm] m\IZ \cap n\IZ [/mm] zweier Hauptideale in [mm] \IZ [/mm] besteht aus den Zahlen, die sowohl Vielfache von m als auch von n sind.
D.h. [mm] I\cap [/mm] J ist die Menge dergemeinsamen Vielfachen von m und n.

I + J:
Ich weiß, dass eine Zahl [mm] g\in \IZ [/mm] die Eigenschafts des ggT von m und n hat, genau dann wenn g ein Erzeugendes der gruppe [mm] m\IZ+n\IZ [/mm] ist.
Somit gilt: [mm] m\IZ+n\IZ=g\IZ, [/mm] wobei g=ggT(m,n)
D.h. I+J der ggT von m und n.

Meine erste Frage: Kann ich das so machen? und dann meine zweite Frage, wie kann ich I*J interpretieren, ich weiß, dass für [mm] s\in [/mm] I*J gilt:
[mm] s=\summe_{i=1}^{n}x_i*y_i [/mm] mit [mm] x_i \in [/mm] I und [mm] y_i \in [/mm] J

Wäre lieb wenn Ihr mir da weiter helfen könntet.
LG Susi


        
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Di 13.12.2016
Autor: sandroid

Hallo Susi,

ich schaue gerade zufaellig nach langer Zeit einmal wieder rein, und denke, dass ich da helfen kann.

Deine Antworten zu $I + J$ und $I [mm] \cap [/mm] J$ sehen gut aus. Vielleicht: Wie kannst du die Menge der gemeinsamen Vielfachen formal ausdruecken? (Tipp: Benutze kgV)

Zu $IJ$: $IJ = [mm] \{ x \cdot m \cdot y \cdot n : x,y \in \mathbb{Z} \} [/mm] =  [mm] \{ x \cdot y \cdot m \cdot n : x,y \in \mathbb{Z} \} [/mm] =  [mm] \{z \cdot m \cdot n : z \in \mathbb{Z} \}$, [/mm] also ist das doch wieder ein Ideal! Oder habe ich das falsch verstanden und * ist bei dir eine andere Operation?

Gruss,
Sandro


Bezug
                
Bezug
Ideale: weitere Frage
Status: (Frage) beantwortet Status 
Datum: 09:56 Mi 14.12.2016
Autor: nightsusi

Aufgabe
Seien R ein kommutativer Ring, I,J zwei Ideale.
Seien [mm] M\subset [/mm] R eine Menge und [mm] S_M=\{L|M\subset L, L \mbox{ ist ein Ideal in } R\}. [/mm] Zeigen Sie: [mm] (M)=\bigcap_{L\in S_M}^{}L. [/mm]

>

> Oder habe ich das
> falsch verstanden und * ist bei dir eine andere Operation?
>  

Nein * ist die "ganz normale" Multiplikation :-)




Erstmal vielen Dank für die Rückmeldung, damit bin ich schon ein gutes Stück weitergekommen. DANKE!

Aber jetzt hänge ich beim obigen Aufgabenteil und hab so recht gar keinen Ansatz wie ich die Aufgabe beweisen kann. Vielleicht könnt Ihr mir da weiter helfen.

Liebe Grüße



Bezug
                        
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Mi 14.12.2016
Autor: hippias

Es ist ja eine Mengengleichheit zu zeigen, daher zeigst Du, dass die Menge auf der linken Seite in der, auf der rechten Seite enthalten ist und umgekehrt.

Wie ist die Definition von $(M)$?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de