www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ideale
Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 14:09 Fr 12.09.2008
Autor: Irmchen

Guten Tag alle zusammen!

Ich habe in der Vorlesung eine Bemerkung gefunden, zu der ich eine Frage habe.

Bemerkung:

Ideale sind genau die Kerne der Ringhomomorphismen.

Diese Behauptung kann ich sogar beweisen. Leider sehe ich hierbei nicht den tiefgründigen Sinn.. Und was ich noch nicht nachvollziehen kann, ist, warum die Bilder der Ringhomomorphismen nicht immer  Ideale sind.

Ich hoffe, dass mir da jemand helfen kann!

Vielen Dank!

Viele Grüße
Irmchen

        
Bezug
Ideale: etwas dazu
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 12.09.2008
Autor: statler

Hallo Irmchen!

> Ich habe in der Vorlesung eine Bemerkung gefunden, zu der
> ich eine Frage habe.
>  
> Bemerkung:
>  
> Ideale sind genau die Kerne der Ringhomomorphismen.
>  
> Diese Behauptung kann ich sogar beweisen. Leider sehe ich
> hierbei nicht den tiefgründigen Sinn. Und was ich noch
> nicht nachvollziehen kann, ist, warum die Bilder der
> Ringhomomorphismen nicht immer  Ideale sind.

Der tiefere Sinn liegt darin, daß man generell versucht, einen Überblick über die Struktur von Ringen zu erhalten. Ein Mittel dazu ist auch die Untersuchung der möglichen Abbildungen zwischen ihnen, und deren Kerne sind eben die Ideale. Wenn ich alle Ideale eines Ringes kenne, kenne ich alle seine surjektiven Bilder (cum grano salis).

In erster Näherung sortiert man die Ringe nach ihren Idealen: gar keine Ideale, nur Hauptideale, alle Ideale endlich erzeugt, alle Ideale Produkt von Primidealen, genau ein maximales Ideal,... (es gibt da viele Varianten)

Daß das Bild eines Ringes nicht immer ein Ideal ist, siehst du sofort, wenn du die Einbettung von [mm] \IZ [/mm] in [mm] \IQ [/mm] betrachtest.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Fr 12.09.2008
Autor: Irmchen

Hallo Dieter!

Danke für Deinen Beitrag!
Jedoch habe ich noch nicht alles verstanden.

Zu Deiner Bemerkung:

> Daß das Bild eines Ringes nicht immer ein Ideal ist, siehst
> du sofort, wenn du die Einbettung von [mm]\IZ[/mm] in [mm]\IQ[/mm]
> betrachtest.  

Also, [mm] \IQ [/mm] ist ein kommutativer Ring und [mm] \IZ [/mm] eine Teilmenge von [mm] \IQ [/mm].
Aber [mm] \IZ [/mm] ist keine Ideal bezüglich diesen Ringes.

Ich sehe hier leider nicht worauf Du hinaus möchtest ... :-(

Vielen Dank!

Viele Grüße
Irmchen

Bezug
                        
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Fr 12.09.2008
Autor: statler

Hi Irmchen!

> Zu Deiner Bemerkung:
>  
> > Daß das Bild eines Ringes nicht immer ein Ideal ist, siehst
> > du sofort, wenn du die Einbettung von [mm]\IZ[/mm] in [mm]\IQ[/mm]
> > betrachtest.  
>
> Also, [mm]\IQ[/mm] ist ein kommutativer Ring und [mm]\IZ[/mm] eine Teilmenge

...sogar ein Unterring....

> von [mm]\IQ [/mm].
> Aber [mm]\IZ[/mm] ist kein Ideal bezüglich dieses Ringes.
>  
> Ich sehe hier leider nicht worauf Du hinaus möchtest ...
> :-(

Naja, [mm] \IZ [/mm] ist das Bild von [mm] \IZ, [/mm] aber eben kein Ideal. [mm] \IQ [/mm] hat nur 2 (unechte) Ideale. Für eine solche Situation hast du doch ein Beispiel gesucht, oder?

Gruß und schönes WE
Dieter


Bezug
                                
Bezug
Ideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Sa 13.09.2008
Autor: Irmchen

Hallo!

Ja , sicher :-)!

Vielen Dank und eine schönes Wochenende!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de