www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Ideale in Z[x]
Ideale in Z[x] < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale in Z[x]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Fr 29.11.2013
Autor: Schadowmaster

edit: Nach Gesprächen mit einem Kommilitonen geb ich lieber mal die gesamten mir zur Verfügung stehenden Infos.^^


Aufgabe
Sei $I [mm] \leq \IZ[x]$ [/mm] ein Ideal, das folgende Bedingungen erfüllt:
1) Es existiert ein $p [mm] \in \IP$ [/mm] und ein $s [mm] \in \IN$ [/mm] mit [mm] $p^s \in [/mm] I$.
2) Es existiert ein $f [mm] \in [/mm] I$ mit grad$(f) [mm] \geq [/mm] 1$ und $f$ normiert, sodass $f$ sowohl in [mm] $\IZ[x]$ [/mm] als auch modulo $p$ irreduzibel ist.
Dann existieren $z [mm] \in \IZ$ [/mm] und $g [mm] \in \IZ[x]$ [/mm] mit $I = [mm] \langle z,g\rangle$. [/mm]
Es gilt sogar [mm] $I=\langle p^i,f\rangle$ [/mm] für ein $0 [mm] \leq [/mm] i [mm] \leq [/mm] s$.




Hey,

beim Versuch für meine Bachelorarbeit einen sehr hässlichen Beweis (5 Seiten Indexschubserei) zu verschönern hänge ich gerade an obigem Problem.
Ich habe das zu zeigende Problem mit Isomorphiesätzen und ein wenig gerede auf diese Form gebracht, die vermeintlich schön aussieht, da [mm] $\IZ[x]$ [/mm] nicht der hässlichste Ring ist.
Leider habe ich keinen Ansatz und keine Idee, wie ich diese Aussage zeigen könnte...
Hat jemand einen Vorschlag dazu?

lg

Schadow

        
Bezug
Ideale in Z[x]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Fr 29.11.2013
Autor: Schadowmaster

Ich sollte mir wohl mal angewöhnen erst zu fragen, nachdem ich wirklich aufgegeben habe, und nicht wenn ich noch ein paar Stunden danach an dem Problem überlegen will...
Hat sich erledigt, hab das schon selbst (bzw. mit ein wenig offline-Hilfe^^) widerlegt gekriegt.

Bezug
        
Bezug
Ideale in Z[x]: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Fr 29.11.2013
Autor: felixf

Moin!

> edit: Nach Gesprächen mit einem Kommilitonen geb ich
> lieber mal die gesamten mir zur Verfügung stehenden
> Infos.^^
>  
>
> Sei [mm]I \leq \IZ[x][/mm] ein Ideal, das folgende Bedingungen
> erfüllt:
>  1) Es existiert ein [mm]p \in \IP[/mm] und ein [mm]s \in \IN[/mm] mit [mm]p^s \in I[/mm].
>  
> 2) Es existiert ein [mm]f \in I[/mm] mit grad[mm](f) \geq 1[/mm] und [mm]f[/mm]
> normiert, sodass [mm]f[/mm] sowohl in [mm]\IZ[x][/mm] als auch modulo [mm]p[/mm]
> irreduzibel ist.

Kleine Bemerkung: wenn es modulo $p$ irreduzibel ist, dann bereits in [mm] $\IZ[x]$, [/mm] da es normiert ist.

>  Dann existieren [mm]z \in \IZ[/mm] und [mm]g \in \IZ[x][/mm] mit [mm]I = \langle z,g\rangle[/mm].
>  
> Es gilt sogar [mm]I=\langle p^i,f\rangle[/mm] für ein [mm]0 \leq i \leq s[/mm].

Das Ideal $I [mm] \cap \IZ$ [/mm] ist ein Hauptideal; da [mm] $p^s$ [/mm] drinnenliegt, muss $I [mm] \cap \IZ [/mm] = [mm] \langle p^i \rangle$ [/mm] sein mit $i [mm] \in \{ 0, \dots, s \}$. [/mm]

Sei $g [mm] \in [/mm] I$ ein Element. Indem wir Polynomdivision mit $f$ machen, koennen wir es zu einem Polynom mit [mm] $\deg [/mm] g < [mm] \deg [/mm] f$ reduzieren. Durch Hinzuaddieren von passenden Vielfachen von [mm] $p^i$ [/mm] koennen wir die Koeffizienten in den Bereich $0, [mm] \dots, p^i-1$ [/mm] bringen. Sei $r [mm] \in \IZ[x]$ [/mm] das Resultat. Wir muessen nun zeigen, dass $r = 0$ ist: daraus folgt $I = [mm] \langle p^i, [/mm] f [mm] \rangle$. [/mm]

Angenommen $r [mm] \neq [/mm] 0$. Sei $r = [mm] p^j \hat{r}$ [/mm] mit [mm] $\hat{r} [/mm] = [mm] \sum_{k=0}^{\deg f - 1} a_k x^k$, [/mm] $0 [mm] \le a_k [/mm] < [mm] p^i$ [/mm] so dass fuer ein $k$ gilt $p [mm] \nmid a_k$; [/mm] dann gilt $0 [mm] \le [/mm] j < i$.

In [mm] $(\IZ/p\IZ)[x]$ [/mm] sind $f$ und [mm] $\hat{r}$ [/mm] teilerfremd, womit man $1 + p [mm] \cdot h_1 [/mm] = f [mm] \cdot h_2 [/mm] + [mm] \hat{r} \cdot h_3$ [/mm] mit [mm] $h_1, h_2, h_3 \in \IZ[x]$ [/mm] schreiben kann. Multipliziert man dies mit [mm] $p^j$, [/mm] so bekommen wir [mm] $p^j [/mm] + [mm] p^{j+1} h_1 \in [/mm] I$. Da $j < i$ ist koennen wir dies mit [mm] $p^{i-j-1}$ [/mm] multiplizieren und bekommen [mm] $p^{i-1} \in [/mm] I$, ein Widerspruch.

Also muss $r = 0$ sein, womit $I = [mm] \langle p^i, [/mm] f [mm] \rangle$ [/mm] ist. Tada :)

LG Felix


Bezug
                
Bezug
Ideale in Z[x]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:26 Sa 30.11.2013
Autor: Schadowmaster

Ok, ich notiere mir: niemals unter Stress und genervt an Gegenbeispiele glauben, die kann man wenn man Ruhe hat alle widerlegen. xD
Vielen Dank felix, so nett aufgeschrieben sieht das sogar total einfach aus. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de