www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebraische Geometrie" - Ideale von Punkten
Ideale von Punkten < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale von Punkten: Idee, Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:25 Mo 24.10.2016
Autor: MinLi

Aufgabe
Beweisen Sie: Für einen Punkt a = [mm] (a_{1} ,...,a_{n} [/mm] ) [mm] \in K^{n} [/mm] gilt {f [mm] \in K[X_{1},...,X_{n}] [/mm] | f(a) = 0} = [mm] (X_{1} [/mm] - [mm] a_{1},..., X_{n} [/mm] - [mm] a_{n}). [/mm]
Warum kann man schon auf der linken Seite der Gleichung erkennen, dass es sich bei der Menge um ein Ideal handelt?

Hallo liebe Community,

Ich soll folgende Aufgabe lösen. Wir haben auch noch den Tipp gekriegt, dass wir es zuerst für den Spezialfall a=(0,...,0) zeigen sollen und dann erst für ein allgemeines a.

Allerdings habe ich mit der Aufgabe ein paar Probleme.

Ich habe mir folgendes überlegt was mir allerdings für diese Aufgabe zu kurz und zu einfach erscheint, aber ich sehe nicht wo mein Fehler liegt. Vielleicht könnte mir einer von euch sagen wo ich mich irre und wie ich diese Aufgabe lösen kann.

Für a=(0,...,0) gilt:
{f [mm] \in K[X_{1},...,X_{n}] [/mm] | f(a) = 0}
= {f [mm] \in K[X_{1},...,X_{n}] [/mm] | f((0,...,0)) = 0}
= { [mm] \summe_{i=1}^{n} b_{i}*X_{i} [/mm] | [mm] b_{i} \in [/mm] K} , nach der Definition von Idealen gilt dann
= [mm] (X_{1},...,X_{n}) [/mm]

So hätte ich den ersten Fall bewiesen und für allgemeines a würde ich das jetzt analog machen.
Wie gesagt, ich kann mir nicht vorstellen, dass es so trivial ist, weiß aber nicht wo mein Fehler liegt. Ich vermute mal das zweite Gleichheitszeichen.
Würde mich über etwas Hilfe sehr freuen.

Liebe Grüße, MinLi


        
Bezug
Ideale von Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Di 25.10.2016
Autor: tobit09

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo MinLi!


> Für a=(0,...,0) gilt:
> $\{$f [mm]\in K[X_{1},...,X_{n}][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| f(a) = 0$\}$

>  = $\{$f [mm]\in K[X_{1},...,X_{n}][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| f((0,...,0)) = 0$\}$

>  = $\{$ [mm]\summe_{i=1}^{n} b_{i}*X_{i}[/mm] | [mm]b_{i} \in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K$\}$
Hier soll es vermutlich K[X_1,\ldots,X_n] statt $K$ heißen.

> nach der Definition von Idealen gilt dann
>  = [mm](X_{1},...,X_{n})[/mm]

In der Tat liegt der Hase im mittleren Gleichheitszeichen begraben: Warum gilt diese Gleichheit?


Wenn [mm] $f=\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*X_1^{i_1}*\ldots *X_n^{i_n}\in K[X_1,\ldots,X_n]$ [/mm] ist, wie lautet dann $f(0)$?


Zum zweiten Teil, dem Beweis der eigentlichen Behauptung unter Verwendung des als bewiesen angenommenen Spezialfalles a=0:

Für jedes [mm] $f\in K[X_1,\ldots,X_n]$ [/mm] betrachte das Polynom [mm] $g_f:=f(X_1+a_1,\ldots,X_n+a_n)\in K[X_1,\ldots,X_n]$. [/mm]
Dann kann man sich [mm] $f(a)=g_f(0)$ [/mm] überlegen.
Insbesondere [mm] $f(a)=0\iff g_f(0)=0$. [/mm]

Überlege dir weiter die Äquivalenz: [mm] $f\in (X_1-a_1,\ldots,X_n-a_n)\iff g_f\in (X_1,\ldots,X_n)$. [/mm]
(Für die Rückrichtung nutze [mm] $f=g_f(X_1-a_1,\ldots,X_n-a_n)$.) [/mm]

Schließlich setze alles zusammen.


Die Zusatzfrage aus der Aufgabenstellung kannst du unabhängig von der restlichen Aufgabe bearbeiten: Rechne nach, dass die Menge auf der linken Seite den definierenden Eigenschaften eines Ideals in [mm] $K[X_1,\ldots,X_n]$ [/mm] genügt.


Viele Grüße
Tobias

Bezug
                
Bezug
Ideale von Punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 25.10.2016
Autor: MinLi

Vielen Dank für die schnelle Antwort!

> In der Tat liegt der Hase im mittleren Gleichheitszeichen
> begraben: Warum gilt diese Gleichheit?
>  
>
> Wenn
> [mm]f=\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*X_1^{i_1}*\ldots *X_n^{i_n}\in K[X_1,\ldots,X_n][/mm]
> ist, wie lautet dann [mm]f(0)[/mm]?

Wenn [mm] f(X_{1},...,X_{n})=\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*X_1^{i_1}*\ldots *X_n^{i_n}\in K[X_1,\ldots,X_n], [/mm] gilt dann nicht einfach f(0) = [mm] \sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*0^{i_1}*\ldots *0^{i_n} [/mm] = 0?




>
> Zum zweiten Teil, dem Beweis der eigentlichen Behauptung
> unter Verwendung des als bewiesen angenommenen
> Spezialfalles a=0:
>  
> Für jedes [mm]f\in K[X_1,\ldots,X_n][/mm] betrachte das Polynom
> [mm]g_f:=f(X_1+a_1,\ldots,X_n+a_n)\in K[X_1,\ldots,X_n][/mm].
>  Dann
> kann man sich [mm]f(a)=g_f(0)[/mm] überlegen.
>  Insbesondere [mm]f(a)=0\iff g_f(0)=0[/mm].
>  
> Überlege dir weiter die Äquivalenz: [mm]f\in (X_1-a_1,\ldots,X_n-a_n)\iff g_f\in (X_1,\ldots,X_n)[/mm].
>  
> (Für die Rückrichtung nutze
> [mm]f=g_f(X_1-a_1,\ldots,X_n-a_n)[/mm].)

Für die Hinrichtung gilt:
f [mm] \in (X_1-a_1,...,X_n-a_n) [/mm]
[mm] \Rightarrow f(X_1,...,X_n) [/mm] = [mm] \summe_{i=1}^{n} b_i*(X_i-a_i) [/mm]
[mm] \Rightarrow f(X_1+a_1,...,X_n+a_n) [/mm] =  [mm] \summe_{i=1}^{n} b_i*(X_i+a_i-a_i) [/mm] =  [mm] \summe_{i=1}^{n} b_i*X_i [/mm]
[mm] \Rightarrow g_f \in (X_1,...,X_n) [/mm]

Rückrichtung:
Es gilt: [mm] g_f(X_1,...,X_n) [/mm] = [mm] f(X_1+a_1,...,X_n+a_n) [/mm]
[mm] \Rightarrow g_f(X_1-a_1,...,X_n-a_n) [/mm] = [mm] f(X_1,...,X_n) [/mm]
Also gilt:
[mm] g_f(X_1,...,X_n) \in (X_1,...,X_n) [/mm]
[mm] \Rightarrow g_f(X_1,...,X_n) [/mm] = [mm] f(X_1+a_1,...,X_n+a_n) [/mm] = [mm] \summe_{i=1}^{n} b_i*X_i [/mm]
[mm] \Rightarrow f(X_1,...,X_n) [/mm] = [mm] \summe_{i=1}^{n} b_i*(X_i-a_i) [/mm]
[mm] \Rightarrow [/mm] f [mm] \in (X_1-a_1,...,X_n-a_n) [/mm]


> Schließlich setze alles zusammen.

Allerdings erkenne ich noch nicht direkt wie mir diese Äquivalenz beim lösen der Aufgabe hilft.
Vielleicht könntest du mir da nochmal eine kleine Hilfestellung geben.

Liebe Grüße, MinLi

Bezug
                        
Bezug
Ideale von Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Di 25.10.2016
Autor: tobit09

Sei für [mm] $a\in K^n$ [/mm] jeweils

     [mm] $M_a:=\{f\in K[X_1,\ldots,X_n]\;|\;f(a)=0\}$. [/mm]


> > Wenn
> >
> [mm]f=\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*X_1^{i_1}*\ldots *X_n^{i_n}\in K[X_1,\ldots,X_n][/mm]
> > ist, wie lautet dann [mm]f(0)[/mm]?
>  
> Wenn
> [mm]f(X_{1},...,X_{n})=\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*X_1^{i_1}*\ldots *X_n^{i_n}\in K[X_1,\ldots,X_n],[/mm]
> gilt dann nicht einfach f(0) =
> [mm]\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*0^{i_1}*\ldots *0^{i_n}[/mm]
> = 0?

Das stimmt fast, aber nicht ganz.
Nach deiner Überlegung wäre hätte jedes beliebige Polynom aus [mm] $K[X_1,\ldots,X_n]$ [/mm] in 0 eine Nullstelle.

Dein letztes Gleichheitszeichen stimmt i.A. nicht.
In beliebigen Körpern gilt für [mm] $i\in\IN_0$: [/mm]

       [mm] $0^i=\begin{cases}0&\text{für }i>0\\1&\text{für }i=0\end{cases}$. [/mm]

Somit gibt es in der Summe [mm] $\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*0^{i_1}*\ldots *0^{i_n}$ [/mm] einen möglicherweise nicht verschwindenden Summanden: Den für [mm] $i_1=\ldots=i_n=0$. [/mm]

Also [mm] $f(0)=a_{0,\ldots,0}$. [/mm]

Das Polynom $f$ erfüllt also $f(0)=0$ genau dann, wenn [mm] $a_{0,\ldots,0}=0$ [/mm] gilt.
Die Bedingung [mm] $a_{0,\ldots,0}=0$ [/mm] ist wiederum äquivalent zu [mm] $f\in(X_1,\ldots,X_n)$. [/mm] (Warum?)

Also gilt für jedes [mm] $f\in K[X_1,\ldots,X_n]$ [/mm] die Äquivalenz:
[mm] $f\in M_0\iff f\in (X_1,\ldots,X_n)$. [/mm]

Also haben wir in der Tat [mm] $M_0=(X_1,\ldots,X_n)$. [/mm]


> > Zum zweiten Teil, dem Beweis der eigentlichen Behauptung
> > unter Verwendung des als bewiesen angenommenen
> > Spezialfalles a=0:
>  >  
> > Für jedes [mm]f\in K[X_1,\ldots,X_n][/mm] betrachte das Polynom
> > [mm]g_f:=f(X_1+a_1,\ldots,X_n+a_n)\in K[X_1,\ldots,X_n][/mm].
>  >  
> Dann
> > kann man sich [mm]f(a)=g_f(0)[/mm] überlegen.
>  >  Insbesondere [mm]f(a)=0\iff g_f(0)=0[/mm].
>  >  
> > Überlege dir weiter die Äquivalenz: [mm]f\in (X_1-a_1,\ldots,X_n-a_n)\iff g_f\in (X_1,\ldots,X_n)[/mm].
>  
> >  

> > (Für die Rückrichtung nutze
> > [mm]f=g_f(X_1-a_1,\ldots,X_n-a_n)[/mm].)
>  
> Für die Hinrichtung gilt:
>  f [mm]\in (X_1-a_1,...,X_n-a_n)[/mm]
> [mm]\Rightarrow f(X_1,...,X_n)[/mm] = [mm]\summe_{i=1}^{n} b_i*(X_i-a_i)[/mm]
>  
> [mm]\Rightarrow f(X_1+a_1,...,X_n+a_n)[/mm] =  [mm]\summe_{i=1}^{n} b_i*(X_i+a_i-a_i)[/mm]
> =  [mm]\summe_{i=1}^{n} b_i*X_i[/mm]
>  [mm]\Rightarrow g_f \in (X_1,...,X_n)[/mm]
>  
> Rückrichtung:
>  Es gilt: [mm]g_f(X_1,...,X_n)[/mm] = [mm]f(X_1+a_1,...,X_n+a_n)[/mm]
>  [mm]\Rightarrow g_f(X_1-a_1,...,X_n-a_n)[/mm] = [mm]f(X_1,...,X_n)[/mm]
>  Also gilt:
>  [mm]g_f(X_1,...,X_n) \in (X_1,...,X_n)[/mm]
>  [mm]\Rightarrow g_f(X_1,...,X_n)[/mm]
> = [mm]f(X_1+a_1,...,X_n+a_n)[/mm] = [mm]\summe_{i=1}^{n} b_i*X_i[/mm]
>  
> [mm]\Rightarrow f(X_1,...,X_n)[/mm] = [mm]\summe_{i=1}^{n} b_i*(X_i-a_i)[/mm]
>  
> [mm]\Rightarrow[/mm] f [mm]\in (X_1-a_1,...,X_n-a_n)[/mm]

[ok]


> > Schließlich setze alles zusammen.
>  
> Allerdings erkenne ich noch nicht direkt wie mir diese
> Äquivalenz beim lösen der Aufgabe hilft.

Für alle [mm] $f\in K[X_1,\ldots,X_n]$ [/mm] gelten die Äquivalenzen:

[mm] $f\in M_a\iff f(a)=0\iff g_f(0)=0\iff g_f\in M_0\iff g_f\in (X_1,\ldots,X_n)\iff f\in (X_1-a_1,\ldots,X_n-a_n)$. [/mm]

Somit gilt tatsächlich [mm] $M_a=(X_1-a_1,\ldots,X_n-a_n)$. [/mm]

Bezug
                                
Bezug
Ideale von Punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:49 Do 27.10.2016
Autor: MinLi


> Sei für [mm]a\in K^n[/mm] jeweils
>  
> [mm]M_a:=\{f\in K[X_1,\ldots,X_n]\;|\;f(a)=0\}[/mm].
>  
>
> > > Wenn
> > >
> >
> [mm]f=\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*X_1^{i_1}*\ldots *X_n^{i_n}\in K[X_1,\ldots,X_n][/mm]
> > > ist, wie lautet dann [mm]f(0)[/mm]?
>  >  
> > Wenn
> >
> [mm]f(X_{1},...,X_{n})=\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*X_1^{i_1}*\ldots *X_n^{i_n}\in K[X_1,\ldots,X_n],[/mm]
> > gilt dann nicht einfach f(0) =
> >
> [mm]\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*0^{i_1}*\ldots *0^{i_n}[/mm]
> > = 0?
>  Das stimmt fast, aber nicht ganz.
> Nach deiner Überlegung wäre hätte jedes beliebige
> Polynom aus [mm]K[X_1,\ldots,X_n][/mm] in 0 eine Nullstelle.
>  
> Dein letztes Gleichheitszeichen stimmt i.A. nicht.
>  In beliebigen Körpern gilt für [mm]i\in\IN_0[/mm]:
>  
> [mm]0^i=\begin{cases}0&\text{für }i>0\\1&\text{für }i=0\end{cases}[/mm].
>  
> Somit gibt es in der Summe
> [mm]\sum_{i_1,\ldots,i_n\in\IN_0}a_{i_1,\ldots,i_n}*0^{i_1}*\ldots *0^{i_n}[/mm]
> einen möglicherweise nicht verschwindenden Summanden: Den
> für [mm]i_1=\ldots=i_n=0[/mm].
>  
> Also [mm]f(0)=a_{0,\ldots,0}[/mm].
>  
> Das Polynom [mm]f[/mm] erfüllt also [mm]f(0)=0[/mm] genau dann, wenn
> [mm]a_{0,\ldots,0}=0[/mm] gilt.
>  Die Bedingung [mm]a_{0,\ldots,0}=0[/mm] ist wiederum äquivalent zu
> [mm]f\in(X_1,\ldots,X_n)[/mm]. (Warum?)

[mm]a_{0,\ldots,0}=0[/mm] [mm] \gdw[/mm]  [mm]f\in(X_1,\ldots,X_n)[/mm] gilt, da  [mm]a_{0,\ldots,0}=0[/mm] bedeutet, dass das Polynom f [mm] \in K[X_1,...,X_n] [/mm] keinen konstanten Koeffizienten ohne Variable besitzt. Daraus folgt allerdings schon, dass für dieses f gilt: f [mm] \in (X_1,...,X_n). [/mm]

Den Rest der Aufgabe habe ich nun dank deiner Hilfe hingekriegt.

Liebe Grüße, MinLi


Bezug
                                        
Bezug
Ideale von Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Do 27.10.2016
Autor: tobit09


> > Das Polynom [mm]f[/mm] erfüllt also [mm]f(0)=0[/mm] genau dann, wenn
> > [mm]a_{0,\ldots,0}=0[/mm] gilt.
>  >  Die Bedingung [mm]a_{0,\ldots,0}=0[/mm] ist wiederum äquivalent
> zu
> > [mm]f\in(X_1,\ldots,X_n)[/mm]. (Warum?)
>  
> [mm]a_{0,\ldots,0}=0[/mm] [mm]\gdw[/mm]  [mm]f\in(X_1,\ldots,X_n)[/mm] gilt, da  
> [mm]a_{0,\ldots,0}=0[/mm] bedeutet, dass das Polynom f [mm]\in K[X_1,...,X_n][/mm]
> keinen konstanten Koeffizienten ohne Variable besitzt.
> Daraus folgt allerdings schon, dass für dieses f gilt: f
> [mm]\in (X_1,...,X_n).[/mm]

Wenn [mm] $a_{0,\ldots,0}=0$ [/mm] gilt, hat f die Gestalt

       [mm] $f=\sum_{i_1,\ldots,i_n\in\IN_0 \text{ mit }\exists k\in\{1,\ldots,n\}\colon i_k\neq0} a_{i_1,\ldots,i_n}X_1^{i_1}*\ldots*X_n^{i_n}$. [/mm]

Da [mm] $(X_1,\ldots,X_n)$ [/mm] ein Ideal ist, genügt es daher [mm] $X_1^{i_1}*\ldots*X_n^{i_n}\in (X_1,\ldots,X_n)$ [/mm] für jede Wahl von [mm] $i_1,\ldots,i_n\in\IN_0$ [/mm] mit [mm] $\exists k\in\{1,\ldots,n\}$ [/mm] mit [mm] $i_k\not=0$ [/mm] zu zeigen.
Dies folgt jedoch aus

       [mm] $X_1^{i_1}*\ldots*X_n^{i_n}=(X_1^{i_1}\cdot\ldots\cdot X_{k-1}^{i_{k-1}}\cdot X_{k}^{i_k-1}\cdot X_{k+1}^{i_{k+1}}\cdot\ldots\cdot X_{n}^{i_n})\cdot X_k$ [/mm]

und [mm] $X_k\in(X_1,\ldots,X_n)$. [/mm]

Damit ist gezeigt: Im Falle [mm] $a_{0,\ldots,0}=0$ [/mm] gilt [mm] $f\in(X_1,\ldots,X_n)$. [/mm]


Um umgekehrt zu zeigen, dass [mm] $f\in (X_1,\ldots,X_n)$ [/mm] auch [mm] $a_{0,\ldots,0}=0$ [/mm] impliziert, ist es (wie ich leider erst jetzt bemerkt habe) günstiger, statt [mm] $a_{0,\ldots,0}=0$ [/mm] direkt die äquivalente Bedingung $f(0)=0$ zu zeigen.

Sei also [mm] $f\in(X_1,\ldots,X_n)$. [/mm] Dann existieren Polynome [mm] $f_1,\ldots,f_n\in K[X_1,\ldots,X_n]$ [/mm] mit [mm] $f=\sum_{i=1}^nf_i\cdot X_i$. [/mm] Insbesondere gilt tatsächlich [mm] $f(0,\ldots,0)=\sum_{i=1}^nf_i(0)\cdot [/mm] 0=0$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de