www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funktin im R^3
Implizite Funktin im R^3 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktin im R^3: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:05 Fr 17.07.2009
Autor: McArthur

Aufgabe
Man zeige, dass sich in der Gleichung $xy + z + [mm] 3xz^5 [/mm] = 4$, $z$ in der Nähe von $p = (1,0,1)$ als Funktion von $(x,y)$ schreiben lässt. Man bestimme  [mm] $\frac{\partial z}{\partial x} [/mm] (1,0)$ und [mm] $\frac{\partial z}{\partial y} [/mm] (1,0)$.

Hallo,

vielleicht kann mir jemand sagen, ob meine Überlegungen zu oben genannter Aufgabe richtig sind:

zuerst habe ich mir überlegt:
$F: U [mm] \subset \IR^3 [/mm] = [mm] \IR^2 \times \IR; [/mm] (x,z) [mm] \mapsto [/mm] xy + z + [mm] 3xz^5$ [/mm]
[mm] $F_x [/mm] = [mm] (\frac{\partial F}{\partial x_1},\frac{\partial F}{\partial x_2})$ [/mm] und [mm] $F_z [/mm] = [mm] (\frac{\partial F}{\partial z})$. [/mm]
[mm] $\Rightarrow F_x [/mm] = [mm] (y+3z^5, [/mm] x) , [mm] F_z [/mm] = [mm] (1+15z^4)$. [/mm]
Dann habe ich überprüft: [mm] $det(F_z)(1,0,1) [/mm] = 16 [mm] \not= [/mm] 0 [mm] \Rightarrow$ [/mm] es existiert eine Umgebung V von p, so dass $Q = V [mm] \cap [/mm] M$ ein Graph [mm] $\psi$ [/mm] ist, wobei $M = {(x,z) [mm] \in \IR^2 \times \IR$ [/mm] mit $xy + z + [mm] 3xz^5 [/mm] = 4 }$.

Dann wäre für mich:
[mm] $\frac{\partial z}{\partial x} [/mm] (1,0) = 0 + [mm] 3(\psi(1,0))^5$ [/mm] und
[mm] $\frac{\partial z}{\partial y} [/mm] (1,0) = 1$

Ist das so richtig oder werfe ich etwas durcheinander? Wie lässt [mm] sich$\psi$ [/mm] bestimmen?

Vielen Dank für die Hilfe

        
Bezug
Implizite Funktin im R^3: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Fr 17.07.2009
Autor: MathePower

Hallo McArthur,

> Man zeige, dass sich in der Gleichung [mm]xy + z + 3xz^5 = 4[/mm], [mm]z[/mm]
> in der Nähe von [mm]p = (1,0,1)[/mm] als Funktion von [mm](x,y)[/mm]
> schreiben lässt. Man bestimme  [mm]\frac{\partial z}{\partial x} (1,0)[/mm]
> und [mm]\frac{\partial z}{\partial y} (1,0)[/mm].
>  Hallo,
>  
> vielleicht kann mir jemand sagen, ob meine Überlegungen zu
> oben genannter Aufgabe richtig sind:
>  
> zuerst habe ich mir überlegt:
>  [mm]F: U \subset \IR^3 = \IR^2 \times \IR; (x,z) \mapsto xy + z + 3xz^5[/mm]
>  
> [mm]F_x = (\frac{\partial F}{\partial x_1},\frac{\partial F}{\partial x_2})[/mm]
> und [mm]F_z = (\frac{\partial F}{\partial z})[/mm].
>  [mm]\Rightarrow F_x = (y+3z^5, x) , F_z = (1+15z^4)[/mm].


Hier ist doch [mm]F_{z}=1+15*\red{x}*z^{4}[/mm].


>  
> Dann habe ich überprüft: [mm]det(F_z)(1,0,1) = 16 \not= 0 \Rightarrow[/mm]
> es existiert eine Umgebung V von p, so dass [mm]Q = V \cap M[/mm]
> ein Graph [mm]\psi[/mm] ist, wobei [mm]M = {(x,z) \in \IR^2 \times \IR[/mm]
> mit [mm]xy + z + 3xz^5 = 4 }[/mm].
>  
> Dann wäre für mich:
>  [mm]\frac{\partial z}{\partial x} (1,0) = 0 + 3(\psi(1,0))^5[/mm]
> und
>  [mm]\frac{\partial z}{\partial y} (1,0) = 1[/mm]


Diese Ableitungen mußt Du nochmal nachrechnen.


>  
> Ist das so richtig oder werfe ich etwas durcheinander? Wie
> lässt sich[mm]\psi[/mm] bestimmen?
>  
> Vielen Dank für die Hilfe


Gruß
MathePower

Bezug
                
Bezug
Implizite Funktin im R^3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 17.07.2009
Autor: McArthur

Ja, da hab ich wohl das x übersehen: $ [mm] F_{z}=1+15\cdot{}{x}\cdot{}z^{4} [/mm] $.

Wo ist an den Ableitungen

>  >  [mm]\frac{\partial z}{\partial x} (1,0) = 0 + 3(\psi(1,0))^5[/mm]
> > und
>  >  [mm]\frac{\partial z}{\partial y} (1,0) = 1[/mm]

der Fehler und sind meine Überlegungen sonst richtig?

Bezug
                        
Bezug
Implizite Funktin im R^3: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 17.07.2009
Autor: MathePower

Hallo McArthur,

> Ja, da hab ich wohl das x übersehen:
> [mm]F_{z}=1+15\cdot{}{x}\cdot{}z^{4} [/mm].
>  
> Wo ist an den Ableitungen
>  
> >  >  [mm]\frac{\partial z}{\partial x} (0) = 0 + 3(\psi(1,0))^5[/mm]

> > > und
>  >  >  [mm]\frac{\partial z}{\partial y} (1,0) = 1[/mm]
>  
> der Fehler und sind meine Überlegungen sonst richtig?


Der Fehler ist der, daß diese Werte noch mit
dem Faktor [mm]-\bruch{1}{F_{z}\left(1,0,1\right)}[/mm] zu multiplizieren sind.

Das kannst Du auch nachrechnen, wenn Du

[mm]F\left( \ x,y,z\left(x,y\right) \ \right)=0[/mm]

nach x bzw. y differenzierst.


Sonst ist alles ok.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de