www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Implizite Funktionen
Implizite Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Do 25.05.2006
Autor: Geddie

Aufgabe 1
f = [mm] (f_{1}, f_{2}): \IR^{5} \to \IR^{2} [/mm] sei definiert durch
[mm] f(x_{1}...x_{5}) [/mm] := [mm] 2e^{x_{1}} +x_{2}x_{3} [/mm] - [mm] 4x_{4} [/mm] + 3, [mm] x_{2}cosx_{1} [/mm] - [mm] 6x_{1} [/mm] + [mm] 2x_{3} -x_{5}. [/mm]
Zeigen Sie, dass die Gleichung f(x) = 0 in der Nähe von (0,1,3,2,7) in der Form [mm] (x_{1},x_{2}) [/mm] = [mm] g(x_{3},x_{4},x_{5} [/mm] aufgelöst werden kann.

Aufgabe 2
Sei f: [mm] \IR^{3} \to \IR [/mm] definiert durch f(x,y,z) [mm] :=x^{2}y [/mm] + [mm] e^{x} [/mm] + z sowie [mm] x_{0} [/mm] :=(0,1,-1). Zeigen SIe, dass [mm] f(x_{0}) [/mm] = 0 und dass die Gleichung f(x,y,z) = 0 in der Nähe von [mm] x_{0} [/mm] nach x (in der Form x = g(y,z)) aufgelöst werden kann.

Hallo liebe Mathematiker,

sind zwar zwei Aufgaben, aber ich hab jeweils nur zu einer einzige Problematik eine Frage. und zwar wie kriegt man die Funktionen in die Gestalt [mm] (x_{1},x_{2}) [/mm] = [mm] g(x_{3},x_{4},x_{5} [/mm] bzw. x = g(y,z). Den Rest der Aufgaben hab ich schon gelöst. Bin mir nur bei dieser Umformung sehr unsicher. Würde gerne endlich mal richtig verstehen, wie das funktioniert.

LG

Gerd

        
Bezug
Implizite Funktionen: Satz über impl. Funktion
Status: (Antwort) fertig Status 
Datum: 14:06 Do 25.05.2006
Autor: mathemaduenn

Hallo Gerd,
Die Aufgabe ist eigentlich ein typische Anwendung des []Satzes über implizite Funktionen. Eine Auflösung ist für die geforderten Aussagen gar nicht nötig.
viele Grüße
mathemaduenn

Bezug
                
Bezug
Implizite Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Do 25.05.2006
Autor: Geddie

Aha. Wenns also nur die Anwendung des Satzes ist, dann krieg ich das hin. Danke dir! Schönen Feiertag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de