www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funktionen
Implizite Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Sa 09.08.2008
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

ich habe obige Aufgabe. Das Lösen ist kein Problem. Ich arbeite einfach das Schema aus dem Skript ab und komme auf das richtige Ergebnis. Allerdings ist mir nicht ganz klar, was dieses dann aussagt. Was bedeutet es, dass ich das System lokal umstellen kann? Das ist mir nicht ganz klar.

ciao, Simon.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Sa 09.08.2008
Autor: MathePower

Hallo mikemodanoxxx,

> [Dateianhang nicht öffentlich]
>  Hallo,
>  
> ich habe obige Aufgabe. Das Lösen ist kein Problem. Ich
> arbeite einfach das Schema aus dem Skript ab und komme auf
> das richtige Ergebnis. Allerdings ist mir nicht ganz klar,
> was dieses dann aussagt. Was bedeutet es, dass ich das
> System lokal umstellen kann? Das ist mir nicht ganz klar.

Nun, das bedeutet, daß die []Funktionaldeterminante
im Punkt [mm]\left(2, \ -1, \ 0\right)[/mm] nicht verschwindet:

[mm]det\left(\bruch{\partial \left(f_{1}, f_{2}\right)}{\partial \left(y_{1}, y_{2}\right)}\right)=\left|\begin{matrix} \bruch{\partial f_{1}}{\partial y_{1}} & \bruch{\partial f_{1}}{\partial y_{2}} \\ \bruch{\partial f_{2}}{\partial y_{1}} & \bruch{\partial f_{2}}{\partial y_{2}} \end{matrix}\right|\left(2, \ -1, \ 0\right) \not= 0[/mm]

> ciao, Simon.


Gruß
MathePower

Bezug
                
Bezug
Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Do 14.08.2008
Autor: mikemodanoxxx

Ja das ist mir schon klar, aber ich frage mich halt was mir das bringt?

Was hilft mir es, g'' zu finden?

Bei allen anderen Themen ist mir die mathematische Anwendung klar in der Etechnik (also Reihen, mehrdimensionale Integralrechnung usw).

Das ich das System lokal umstellen kann bedeutet, dass man es in dieser Umgebung lösen kann, oder?

Bezug
                        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Do 14.08.2008
Autor: rainerS

Hallo!

> Ja das ist mir schon klar, aber ich frage mich halt was mir
> das bringt?
>  
> Was hilft mir es, g'' zu finden?
>  
> Bei allen anderen Themen ist mir die mathematische
> Anwendung klar in der Etechnik (also Reihen,
> mehrdimensionale Integralrechnung usw).
>  
> Das ich das System lokal umstellen kann bedeutet, dass man
> es in dieser Umgebung lösen kann, oder?

Es bedeutet, dass es in dieser Umgebung eine eindeutige Lösung hat. Es bedeutet nicht, dass du die Lösung durch einfache Funktionen ausdrücken kannst.

Du hast also Existenz und Eindeutigkeit der Lösung auch für solche Fälle, wo du die Lösung nicht direkt berechnen kannst. Damit kannst du aber zum Beispiel ein geeignetes Näherungsverfahren anwenden.

In der Aufgabe bekomst du also als Ergebnis, dass es für x-Werte in der Nähe von 2 eindeutige Werte von [mm] $y_1$ [/mm] und [mm] $y_2$ [/mm] gibt, sodass die beiden Ausgangsgleichungen erfüllt sind. Und das ist richtig, unabhängig davon, wie einfach oder schwierig es ist, die Funktionen [mm] $g_1(x)$ [/mm] und [mm] $g_2(x)$ [/mm] explizit anzugeben.

Viele Grüße
   Rainer

Bezug
                                
Bezug
Implizite Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:12 Do 14.08.2008
Autor: mikemodanoxxx

danke das wollte ich wissen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de