www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funktionen
Implizite Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktionen: Idee
Status: (Frage) beantwortet Status 
Datum: 21:42 Di 22.06.2010
Autor: richardducat

Aufgabe
Gegeben Sei die Funkion [mm] f:\IR^n \to \IR [/mm] , [mm] f(x_1,...,x_n) [/mm] = [mm] x_1+...+x_n [/mm] - [mm] x_1*...*x_n [/mm] und die Gleichung f(x)-f(p)=0. In welchen Punkten p sind die Vorraussetzungen des Satzes über implizite Funktionen für die (lokale) diffbare Auflösbarkeit dieser Gleichung nach einer Koordinate [mm] x_i [/mm] für alle i=1,...,n erfüllt? Bestimmen Sie in diesen Punkten explizit die Auflösung [mm] x_i=g_i(x_1,...,x_{i-1},x_{i+1},...,x_n) [/mm] und deren partielle Ableitungen [mm] \bruch{\partial g_i }{\partial x_j} [/mm]

hi,

könnt ihr mir einen Tipp geben wie ich die aufgabe lösen kann

danke
richard

        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Mi 23.06.2010
Autor: fred97


> Gegeben Sei die Funkion [mm]f:\IR^n \to \IR[/mm] , [mm]f(x_1,...,x_n)[/mm] =
> [mm]x_1+...+x_n[/mm] - [mm]x_1*...*x_n[/mm] und die Gleichung f(x)-f(p)=0. In
> welchen Punkten p sind die Vorraussetzungen des Satzes
> über implizite Funktionen für die (lokale) diffbare
> Auflösbarkeit dieser Gleichung nach einer Koordinate [mm]x_i[/mm]
> für alle i=1,...,n erfüllt? Bestimmen Sie in diesen
> Punkten explizit die Auflösung
> [mm]x_i=g_i(x_1,...,x_{i-1},x_{i+1},...,x_n)[/mm] und deren
> partielle Ableitungen [mm]\bruch{\partial g_i }{\partial x_j}[/mm]
>  
> hi,
>  
> könnt ihr mir einen Tipp geben wie ich die aufgabe lösen

Ja, schau Dir den Satz über implizit def. Funktionen an !!!!!!!


FRED

> kann
>  
> danke
> richard


Bezug
                
Bezug
Implizite Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:12 Mi 23.06.2010
Autor: richardducat

hallo fred,

den satz hab ich mir natürlich durchgelesen. aber ich vesteh nicht, welche voraussetzung für die (lokale) differenzierbare Auflösbarkeit der gleichung f(x)-f(p) =0 erfüllt sein soll.
außerdem verstehe ich nicht woher diese gleichung kommt und was sie mit meiner funktion f zu tun hat

Hier der Satz aus der Vorlesung:

Sei U [mm] \subset R^m \times R^n [/mm] offen, f : U [mm] \to R^n [/mm] k-mal stetig differenzierbar (k [mm] \ge [/mm] 1)
und (p,q) [mm] \in [/mm] U, so dass f(p,q) = 0. Weiterhin sei das Differential der
Abbildung y [mm] \to [/mm] f(p,y) im Punkt y = q invertierbar.
Dann gibt es offene Umgebungen V [mm] \subset R^m [/mm] von p und W [mm] \subset R^n [/mm] von q und
eine k-mal stetig differenzierbare Abbildung g : V [mm] \to [/mm] W so dass für alle
(x,y) [mm] \in [/mm] V [mm] \times [/mm] W gilt: f(x,y) = 0 [mm] \gdw [/mm] y = g(x).
D.h. [mm] N_f(0) \cap [/mm] V [mm] \times [/mm] W = graph(g).

gruß
richard



Bezug
                        
Bezug
Implizite Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Fr 25.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de