www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Induktion
Induktion < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 17.04.2007
Autor: Fritze15

1²-2²+3²-4²+ [mm] ...+(-1)^{n+1}*n² [/mm] = [mm] (-1)^{n+1}* \bruch{n(n+1)}{2} [/mm]

Induktionsanfang ist klar.

Induktionsbehauptung:
[mm] ((-1)^{n+1}*n²)+(-1)^{(n+1)+1}*(n+1)²=(-1)^{(n+1)+1}* \bruch{(n+1)((n+1)+1)}{2} [/mm]
[mm] ((-1)^{n+1)}*n²)+(-1)^{(n+2)}*(n+1)²=(-1)^{(n+2}* \bruch{(n+1)(n+2)}{2} [/mm]

Induktionsbewies
[mm] (-1)^{n+1}*\bruch{n(n+1)}{2}+(-1)^{(n+2}*(n+1)²=(-1)^{(n+2}* \bruch{(n+1)((n+2)}{2} [/mm]

Und jetzt weis ich nicht wie ich weiter umformen soll.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Di 17.04.2007
Autor: schachuzipus

Hallo,

ich denke, du hast da was "verdreht" im Induktionsschritt:

[mm] \underline{Ind.Vor.}: $\summe_{k=1}^{n} (-1)^{k+1}\cdot{}k=(-1)^{n+1}\cdot{}\frac{n(n+1)}{2}$ [/mm]

[mm] \underline{Ind.Beh.}: $\summe_{k=1}^{\red{n+1}} (-1)^{k+1}\cdot{}k=(-1)^{\red{n+1}+1}\cdot{}\frac{\red{(n+1)}(\red{n+1}+1)}{2}=(-1)^{n+2}\cdot{}\frac{(n+1)(n+2)}{2}$ [/mm]

Nun ist [mm] $\summe_{k=1}^{n+1} (-1)^{k+1}\cdot{}k=\left(\summe_{k=1}^{n} (-1)^{k+1}\cdot{}k\right)+(-1)^{n+1+1}\cdot{}(n+1)$ [/mm] den letzten Summanden rausgezogen

Nun kannst du für die erste Summe (bis n) die Induktionsvoraussetzung benutzen und das dann so ummodeln, dass am Schluss das Gewünschte - also die rechte Seite der Indbeh. dasteht


Hoffe, das hilft dir weiter


Gruß

schachuzipus

Bezug
                
Bezug
Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Di 17.04.2007
Autor: Fritze15

Meiner Meinung nach hab ich das so gemacht wie du mir das beschreibst,nur war meine Darstellung(Summenzeichen,k)nicht ganz richtig, aber sonst hab ich den gleichen Ansatz.
Ich hatte die Induktionsvorraussetzung in meinem Induktionsbeweis bereits eingesetzt.
Mein Problem war das ich mit Umstellen nicht auf die rechte Seite gekommen bin.

Bezug
                        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Di 17.04.2007
Autor: schachuzipus

Hallo nochmal,

ja, irgendwie fehlt die ganze linke Seite der Indbeh. (also die Summe - ob nun mit oder ohne Summenzeichen geschrieben) bei dir.


Kommst du denn nun mit der Umformung im Indschritt zurecht?

Falls nicht, meld dich nochmal

LG

schachuzipus

Bezug
                                
Bezug
Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Di 17.04.2007
Autor: Fritze15

Meine Aufgabe ist es doch nun dies
[mm] (-1)^{n+2}\cdot{}\frac{(n+1)(n+2)}{2} [/mm] $
so umzuformen bis es so
[mm] (-1)^{n+2}\cdot{}\frac{(n+1)(n+2)}{2} [/mm] $
aussieht?
Wenn ja, dann ist genau das mein Problemm.

Bezug
                                        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Di 17.04.2007
Autor: schachuzipus

Jo,

da steht zweimal dasselbe ;-)

ok, umzuformen ist [mm] $\left(\summe_{k=1}^{n} (-1)^{k+1}\cdot{}k\right)+(-1)^{n+2}\cdot{}(n+1)\underbrace{=}_{IndVor}(-1)^{n+1}\frac{n(n+1)}{2}+(-1)^{n+2}(n+1)$ [/mm]


Klammere hier [mm] $(-1)^{n+1}(n+1)$ [/mm] aus, dann siehste es


LG

schachuzipus

Bezug
                                        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Di 17.04.2007
Autor: Fritze15

Ich hab mich vertippt.
Was ich meinte war das
[mm] (-1)^{n+1}\cdot{}\bruch{n(n+1)}{2}+(-1)^{(n+2}\cdot{}(n+1)² [/mm]
Umformen zu
[mm] (-1)^{(n+2}\cdot{} \bruch{(n+1)((n+2)}{2} [/mm]
dem.

Bezug
        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Di 17.04.2007
Autor: HJKweseleit


> 1²-2²+3²-4²+ [mm]...+(-1)^{n+1}*n²[/mm] = [mm](-1)^{n+1}* \bruch{n(n+1)}{2}[/mm]
>  
> Induktionsanfang ist klar.
>  
> Induktionsbehauptung:
>  [mm]((-1)^{n+1}*n²)+(-1)^{(n+1)+1}*(n+1)²=(-1)^{(n+1)+1}* \bruch{(n+1)((n+1)+1)}{2}[/mm]
>  
> [mm]((-1)^{n+1)}*n²)+(-1)^{(n+2)}*(n+1)²=(-1)^{(n+2}* \bruch{(n+1)(n+2)}{2}[/mm]
>  
> Induktionsbewies
>  
> [mm](-1)^{n+1}*\bruch{n(n+1)}{2}+(-1)^{(n+2}*(n+1)²=(-1)^{(n+2}* \bruch{(n+1)((n+2)}{2}[/mm]
>  
> Und jetzt weis ich nicht wie ich weiter umformen soll.

Es ist alles richtig. Wenn ich dich richtig verstehe, weißt du nicht, wie du zeigen sollst, dass in der letzten Gleichung die rechte gleich der linken Seite ist. Das sieht man folgender Maßen:
[mm] (-1)^{n+1}*\bruch{n(n+1)}{2}+(-1)^{(n+2}*(n+1)²=(-1)*(-1)*(-1)^{n+1}*\bruch{n(n+1)}{2}+(-1)^{(n+2}*\bruch{2 (n+1)²}{2} [/mm]
[mm] (-1)*(-1)^{n+2}*\bruch{n(n+1)}{2}+(-1)^{(n+2}*\bruch{2(n+1)²}{2} [/mm]
[mm] =(-1)^{n+2}*\bruch{1}{2}*(-n(n+1)+2(n+1)²)=(-1)^{n+2}*\bruch{1}{2}*(-n^2-n+2n^2+4n+2)=(-1)^{n+2}*\bruch{1}{2}*(n^2+3n+2)) [/mm]
[mm] =(-1)^{(n+2}* \bruch{(n+1)((n+2)}{2} [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de