www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Induktion
Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Do 27.09.2007
Autor: crooky

Aufgabe
Zeigen Sie, dass für alle n Element N im angegebenen Bereich gilt:
8 teilt [mm] (9^n)-1 [/mm]

hallo!
ich habe heute erst die induktion gelernt und deshalb nicht wirklich eine ahnung, wie ich diese aufgabe lösen soll.

als behauptung habe ich
[mm] [(9^n)-1]/8=x [/mm]     x Element N
aufgestellt.

allerdings bringt mir das für den beweis gar nichts, weil ich irgendwie eine zweite seite der gleichung (also nicht x) benötige.
dann habe ich versucht die folge rekursiv darzustellen, doch das hat nicht geklappt.

könnt ihr mir helfen? ich möchte jedoch keine komplettlösung, sondern nur eine kleine hilfe =)

dankeschön!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion: Induktionsschritt
Status: (Antwort) fertig Status 
Datum: 19:27 Do 27.09.2007
Autor: Loddar

Hallo crooky,

[willkommenmr] !!


Den Induktionsanfang mit $n \ = \ 1$ hast Du schon gemacht?

Im Induktionsschritt musst Du nun zeigen, dass auch [mm] $9^{n+1}-1$ [/mm] ein Vielfaches ist und dabei die Induktionsvoraussetzung [mm] $9^n-1 [/mm] \ = \ 8*k$ mit "verarbeiten".

Hier mal die ersten Schritte:

[mm] $$9^{n+1}-1 [/mm] \ = [mm] \9^n*9^1-1 [/mm] \ = \ [mm] 9*9^n-1 [/mm] \ = \ [mm] (8+1)*9^n-1 [/mm] \ = \ [mm] 8*9^n+\blue{9^n-1}$$ [/mm]
Kannst Du nun den letzten Schritt sehen? Was ist mit dem Term [mm] $8*9^n$ [/mm] , ist der durch $8_$ teilbar? Und was ist mit [mm] $9^n-1$ [/mm] ?


Gruß
Loddar


Bezug
                
Bezug
Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 27.09.2007
Autor: crooky

erstmal danke für die schnelle antwort!

aber ehrlich gesagt verstehe ich das immernoch nicht so ganz. ich habe auch noch keinen richtigen induktionsanfang glaube ich:

Behauptung:
[mm] 9^n-1=8x [/mm]

Induktionsanfang für n=1:
linke Seite: 8
rechte Seite: 8x ?

Induktionsschritt:
Annahme:         [mm] 9^k-1= [/mm] 8x
Behauptung:     [mm] 9^{k+1}-1=8*9^k+9^k-1 [/mm]
Beweis:             ???

Ich habe mir schon überlegt, ob ich in der gleichung [mm] 8*9^k+9^k-1 [/mm] das [mm] 9^k-1 [/mm] durch 8x ersetzen könnte, aber dann kommt das raus:
[mm] 8*9^k+8x [/mm] = [mm] 8*(9^k+x) [/mm]
und das bringt mich irgendwie auch nicht weiter...

Bezug
                        
Bezug
Induktion: nahe dran
Status: (Antwort) fertig Status 
Datum: 20:36 Do 27.09.2007
Autor: Loddar

Hallo crooky!


Du bist doch schon nahe dran. Dein $x_$ ist hier eine beliebige natürliche Zahle; also $x \ [mm] \in [/mm] \ [mm] \IN$ [/mm] .



> Behauptung:
> [mm]9^n-1=8x[/mm]

[ok]

  

> Induktionsanfang für n=1:
> linke Seite: 8
> rechte Seite: 8x ?

[ok] Du kannst also für $n \ = \ 1$ den Term [mm] $9^n-1 [/mm] \ = \ [mm] 9^1-1 [/mm] \ = \ 8 \ = \  [mm] 8*\red{1}$ [/mm] als Vielfaches der $8_$ darstellen, da es ein natürliches $x_$ gibt!

  

> Induktionsschritt:
> Annahme:         [mm]9^k-1=[/mm] 8x

[ok]


> Behauptung:     [mm]9^{k+1}-1=8*9^k+9^k-1[/mm]

[notok] Das stimmt nicht: die Behauptung lautet, dass für $n+1_$ der Term [mm] $9^{n+1}-1$ [/mm] ebenfalls ein Vielfaches von $8_$ ist.


>  Beweis:             ???
>  
> Ich habe mir schon überlegt, ob ich in der gleichung
> [mm]8*9^k+9^k-1[/mm] das [mm]9^k-1[/mm] durch 8x ersetzen könnte,

[ok] Völlig richtig so!!


> aber dann kommt das raus:
> [mm]8*9^k+8x[/mm] = [mm]8*(9^k+x)[/mm]

Ist denn [mm] $9^k$ [/mm] eine natürliche Zahl? Und was ergibt die Summe von zwei natürlichen Zahlen? ... Wieder eine natürliche Zahl!

Also ist doch der Term [mm] $9^k+x$ [/mm] wiederum eine natürliche Zahl. Und das Produkt einer natürlichen Zahl mit der $8_$ ergibt was? ... Ein Vielfaches von $8_$ !


Gruß
Loddar


Bezug
                                
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Do 27.09.2007
Autor: crooky

Vielen Dank!

Ich habe es verstanden und wie immer, sieht es danach ziemlich einfach aus ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de