www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion Binomialkoeffiziente
Induktion Binomialkoeffiziente < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion Binomialkoeffiziente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 So 06.01.2013
Autor: Mathematik-Liebhaber

Aufgabe
Für [mm] $m,n\in\IN$ [/mm] werte man die Summe

[mm] S(m,n):=\sum_{k=0}^n\left[\binom{n+m+k}{k}2^{n+1-k}-\binom{m+n+k+1}{k}2^{n-k}\right] [/mm]

geschlossen aus.

(Hinweis: Für [mm] $1\le [/mm] j<l$ gilt [mm] $\tbinom{l}{j}-\tbinom{l}{j-1}=\tbinom{l+1}{j}-2\tbinom{l}{j-1}$.) [/mm]

Hallo zusammen!

Kann mir jemand einen Meta-Hinweis geben, wie ich den Hinweis verwenden kann? Ich komme einfach nicht drauf.

Vielen Dank und Liebe Grüße

        
Bezug
Induktion Binomialkoeffiziente: Tipp
Status: (Antwort) fertig Status 
Datum: 12:59 So 06.01.2013
Autor: sYcore

Hallo Mathematik-Liebhaber,

versuchs mal indem du [mm]2^{n-k}[/mm] ausklammerst und eine einfache Eigenschaft des Binominalkoeffizienten ausnutzt ;)

LG syc


Bezug
                
Bezug
Induktion Binomialkoeffiziente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 So 06.01.2013
Autor: Mathematik-Liebhaber

Vielen Dank schon mal für deine Antwort!

So ganz Klick gemacht hat es aber noch nicht. Ist es richtig/falsch/sinnlos/zielführend, jetzt etwas derartiges stehen zu haben:

[mm] \sum_{k=1}^{n}\left[2^{n-k}\left(\binom{n+m+k}{k}-\binom{m+n+k}{k-1}\right)\right]+2^n,\qquad n\ge1 [/mm]


Liebe Grüße

Bezug
                        
Bezug
Induktion Binomialkoeffiziente: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 So 06.01.2013
Autor: Helbig


> Vielen Dank schon mal für deine Antwort!
>  
> So ganz Klick gemacht hat es aber noch nicht. Ist es
> richtig/falsch/sinnlos/zielführend, jetzt etwas derartiges
> stehen zu haben:
>  
> [mm]\sum_{k=1}^{n}\left[2^{n-k}\left(\binom{n+m+k}{k}-\binom{m+n+k}{k-1}\right)\right]+2^n,\qquad n\ge1[/mm]
>

Falsch und sinnlos.

Gruß Wolfgang


Bezug
        
Bezug
Induktion Binomialkoeffiziente: Tipp 2
Status: (Antwort) fertig Status 
Datum: 13:40 So 06.01.2013
Autor: Sax

Hi,

deine Überschrift "Induktion" lässt vermuten, dass du etwas mit diesem Beweisverfahren machen möchtest (sollst). Dazu benötigst du natürlich den Ausdruck, zu dem sich S(m,n) zusammenfassen lässt.
Hilft es dir, zu wissen, dass S(m,n) = [mm] \vektor{m+2n+1 \\ n} [/mm] ist ?

Gruß Sax.

Bezug
        
Bezug
Induktion Binomialkoeffiziente: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 So 06.01.2013
Autor: Helbig

Hallo Mathematik-Liebhaber,

> Für [mm]m,n\in\IN[/mm] werte man die Summe
>  
> [mm]S(m,n):=\sum_{k=0}^n\left[\binom{n+m+k}{k}2^{n+1-k}-\binom{m+n+k+1}{k}2^{n-k}\right][/mm]
> geschlossen aus.
>  
> (Hinweis: Für [mm]1\le j
> [mm]\tbinom{l}{j}-\tbinom{l}{j-1}=\tbinom{l+1}{j}-2\tbinom{l}{j-1}[/mm].)
>  Hallo zusammen!
>  

Die Summe hat fast die Form einer Teleskopsumme. Mit
    
    [mm] $a_k={n+m+k \choose k}*2^{n-(k-1)}$ [/mm]

    [mm] $b_k={n+m+k+1 \choose k}*2^{n-k}$ [/mm]

machen wir eine "teleskopische Ergänzung"

    $S(m, n) = [mm] \sum_{k=0}^n (a_k [/mm] - [mm] a_{k+1} [/mm] + [mm] a_{k+1}-b_k)$ [/mm]

Bleibt noch

   $R(m, n) = [mm] \sum_{k=0}^n (a_{k+1}-b_k)$ [/mm]

zu bestimmen. Mit dem Hinweis ergibt sich eine weitere Teleskopsumme.

Gruß,
Wolfgang


Bezug
                
Bezug
Induktion Binomialkoeffiziente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mo 07.01.2013
Autor: Mathematik-Liebhaber

Hallo, Helbig!

Ich glaube dein Hinweis hat mir schonmal sehr weitergeholfen. Auch wenn ich nicht wüsste, wie man darauf kommt. Kannst du mir sagen, wo ich mich verrechnet habe? Ich finde nichts...


$$
[mm] S(m,n)=\sum_{k=0}^{n}\left[\binom{m+n+k}{k}2^{n+1-k}-\binom{m+n+k+1}{k}2^{n-k}\right] [/mm]

[mm] =\sum_{k=0}^{n}\left[\binom{m+n+k}{k}2^{n+k+1}-\binom{m+n+k+1}{k+1}2^{n-k}\right] [/mm]

[mm] +\sum_{k=0}^{n}\left[\binom{m+n+k+1}{k+1}2^{n-k}-\binom{m+n+k+1}{k}2^{n-k}\right] [/mm]

[mm] =\binom{m+n}{0}2^{n+1}-\binom{m+2n+1}{n+1}2^{n-n} [/mm]

[mm] +\sum_{k=0}^{n}\left[\binom{m+n+k+2}{k+1}2^{n-k}-\binom{m+n+k+1}{k}2^{n-(k-1)}\right] [/mm]

[mm] =2^{n+1}-\binom{m+2n+1}{n+1}+\binom{m+2n+2}{n+1}-\binom{m+n+1}{0}2^{n+1} [/mm]

=
$$

Liebe Grüße

Bezug
                        
Bezug
Induktion Binomialkoeffiziente: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mo 07.01.2013
Autor: Helbig


>  
> Ich glaube dein Hinweis hat mir schonmal sehr
> weitergeholfen. Auch wenn ich nicht wüsste, wie man darauf
> kommt. Kannst du mir sagen, wo ich mich verrechnet habe?
> Ich finde nichts...

Wie kommt man darauf? Übung hilft, Teleskopsummen oder fast Teleskopsummen zu erkennen. Aber wenn man das einmal, wie z. B. hier, gesehen hat, sieht man das auch zweimal... Oder, wenn man Fragen hier im Forum beantwortet. Das übt ungemein!

>
>
> [mm][/mm]
>  
> [mm]S(m,n)=\sum_{k=0}^{n}\left[\binom{m+n+k}{k}2^{n+1-k}-\binom{m+n+k+1}{k}2^{n-k}\right][/mm]
>  
> [mm]=\sum_{k=0}^{n}\left[\binom{m+n+k}{k}2^{n+k+1}-\binom{m+n+k+1}{k+1}2^{n-k}\right][/mm]
>  
> [mm]+\sum_{k=0}^{n}\left[\binom{m+n+k+1}{k+1}2^{n-k}-\binom{m+n+k+1}{k}2^{n-k}\right][/mm]
>  
> [mm]=\binom{m+n}{0}2^{n+1}-\binom{m+2n+1}{n+1}2^{n-n}[/mm]
>  
> [mm]+\sum_{k=0}^{n}\left[\binom{m+n+k+2}{k+1}2^{n-k}-\binom{m+n+k+1}{k}2^{n-(k-1)}\right][/mm]
>  
> [mm]=2^{n+1}-\binom{m+2n+1}{n+1}+\binom{m+2n+2}{n+1}-\binom{m+n+1}{0}2^{n+1}[/mm]
>  
> =
> [mm][/mm]


Alles richtig! Nutze [mm] ${\ell \choose 0} [/mm] = 1$ für den letzten Term und
[mm] ${\ell \choose p+1} [/mm] + [mm] {\ell \choose p} [/mm] = [mm] {\ell+1 \choose p+1}$ [/mm] für die mittleren. Übrigens, aus der letzten Formel ergibt sich auch die aus dem Hinweis.

Gruß,
Wolfgang


Bezug
                                
Bezug
Induktion Binomialkoeffiziente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 08.01.2013
Autor: Mathematik-Liebhaber

Hallo!

[mm]=2^{n+1}-\binom{m+2n+1}{n+1}+\binom{m+2n+2}{n+1}-\binom{m+n+1}{0}2^{n+1}[/mm]
[mm] $=\binom{m+2n+1}{n+1}+\binom{m+2n+2}{n+1}$ [/mm]

> Alles richtig! Nutze [mm]{\ell \choose 0} = 1[/mm] für den letzten
> Term und
>  [mm]{\ell \choose p+1} + {\ell \choose p} = {\ell+1 \choose p+1}[/mm]
> für die mittleren. Übrigens, aus der letzten Formel
> ergibt sich auch die aus dem Hinweis.

Auf die Gefahr hin, mich völlig zu blamieren: Wie hilft mir das? Ich habe doch etwas der Form
[mm] \binom{l}{j}+\binom{l+1}{j} [/mm] .
So, und jetzt hoffe ich einfach mal, nicht 3 Minuten nach Abschicken der Frage eine offensichtliche Lösung zu finden.

Liebe Grüße

Bezug
                                        
Bezug
Induktion Binomialkoeffiziente: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 08.01.2013
Autor: Helbig


> Hallo!
>  
> [mm]=2^{n+1}-\binom{m+2n+1}{n+1}+\binom{m+2n+2}{n+1}-\binom{m+n+1}{0}2^{n+1}[/mm]
>  [mm]=\binom{m+2n+1}{n+1}+\binom{m+2n+2}{n+1}[/mm]

Hier hast Du jetzt das Minus übersehen:
[mm]=\red{-}\binom{m+2n+1}{n+1}+\binom{m+2n+2}{n+1}[/mm]

Und jetzt siehst Du sicher, wie Du die Differenz mit Hilfe der nächsten Formel noch vereinfachen kannst:

>  >  [mm]{\ell \choose p+1} + {\ell \choose p} = {\ell+1 \choose p+1}[/mm]

Gruß,
Wolfgang

Bezug
                                                
Bezug
Induktion Binomialkoeffiziente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Di 08.01.2013
Autor: Mathematik-Liebhaber

Aua!

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de