www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion Fibonacci Zahlen
Induktion Fibonacci Zahlen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion Fibonacci Zahlen: Hilfe zur Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 28.10.2021
Autor: itsyunaaa

Aufgabe
Die Fibonacci-Zahlen1,1,2,3,5,...werden rekursiv definiert durch
a0 := 1, a1 := 1 und an+1 := an +an−1 fu ̈r n ≥ 1. Zeigen Sie mit vollständiger
Induktion, dass 1 ≤ an+1 ≤ 2 fu ̈r n ≥ 0.

Leider habe ich Schwierigkeiten beim Induktionsschritt. Der Induktionsanfang ist mir klar, aber allgemein zu beweisen wie es mit den folgenden zahlen aussieht, fällt mir noch unglaublich schwer. Kann das jemand erklären?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion Fibonacci Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Do 28.10.2021
Autor: fred97


> Die Fibonacci-Zahlen1,1,2,3,5,...werden rekursiv definiert
> durch
>  a0 := 1, a1 := 1 und an+1 := an +an−1 fu ̈r n ≥ 1.
> Zeigen Sie mit vollständiger
>  Induktion, dass 1 ≤ an+1 ≤ 2 fu ̈r n ≥ 0.
>  Leider habe ich Schwierigkeiten beim Induktionsschritt.
> Der Induktionsanfang ist mir klar, aber allgemein zu
> beweisen wie es mit den folgenden zahlen aussieht, fällt
> mir noch unglaublich schwer. Kann das jemand erklären?


diese Aufgabe ist kompletter Unsinn

Zum Beispiel ist [mm] a_4=3. [/mm]

obige Folge ist eine streng wachsende Folge natürlicher Zahlen,  und damit unbeschränkt

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Induktion Fibonacci Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Do 28.10.2021
Autor: Fulla

Hallo itsyunaaa,

die Aufgabe ergibt so tatsächlich keinen Sinn. Wahrscheinlich sollst du die Aussage

    [mm] $1\le\frac{a_{n+1}}{a_n}\le [/mm] 2, [mm] \forall n\ge [/mm] 0$

beweisen.

Der Induktionsschritt sieht dann so aus, dass du

    [mm] $1\le \frac{a_{n+2}}{a_{n+1}}\le [/mm] 2$

zeigen musst.
Verwende dazu die Rekursionsvorschrift und natürlich die Induktionsvoraussetzung.

Hinweis: Aus [mm] $a\le\frac xy\le [/mm] b$ folgt [mm] $\frac 1b\le \frac yx\le\frac [/mm] 1a$.

Lieben Gruß
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de