www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion: N Über K
Induktion: N Über K < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: N Über K: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mi 15.11.2006
Autor: Knut_87

Aufgabe
Zz. durch Induktion:

[mm] \vektor{n \\ k} [/mm] = [mm] \bruch{n!}{k!*(n-k)!} [/mm]

Hi,

ich habe schon wieder eine Frage zur Induktion:

Ich habe den Induktionsanfang gemacht und bewiesen, dass die Gleichung für n=0 gilt. Nun habe ich im Induktionsschritt vor, zu zeigen, dass die Gleichung für n+1 gilt. Mein Ansatz:

[mm] \vektor{n+1 \\ k+1} [/mm] soll gleich  [mm] \bruch{(n+1)!}{(k+1)!*(n-(k+1))!} [/mm] sein.

nun ist [mm] \vektor{n+1 \\ k+1} [/mm] = [mm] \vektor{n \\ k} +\vektor{n \\ k+1} [/mm]

jetzt kann ich da für [mm] \vektor{n \\ k} [/mm]   den   [mm] \bruch{n)!}{k!*(n-k)!} [/mm] einsetzen.

also [mm] \bruch{n!}{k!*(n-k)!} [/mm]  + [mm] \bruch{n!}{(k+1)!*(n-(k+1))!} [/mm] soll zu [mm] \bruch{(n+1)!}{(k+1)!*(n-(k+1))!} [/mm]  umgeformt werden


aber nun bekomme ich das nicht zu [mm] \bruch{(n+1)!}{(k+1)!*(n-(k+1))!} [/mm] umgeformt. Habe ich etwas falsch gemacht? Wo ist der Fehler? Wenn nein, wie kann man das dann umformen?

dankeschön, Gruß Knut

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion: N Über K: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Do 16.11.2006
Autor: angela.h.b.


> Zz. durch Induktion:
>  
> [mm]\vektor{n \\ k}[/mm] = [mm]\bruch{n!}{k!*(n-k)!}[/mm]


Hallo,

zunächst wäre wichtig, wie in der Vorlesung der Binomialkoeffizient definiert wurde. Das wird  man bestimmt benötigen.

> ich habe schon wieder eine Frage zur Induktion:
>  
> Ich habe den Induktionsanfang gemacht und bewiesen, dass
> die Gleichung für n=0 gilt. Nun habe ich im
> Induktionsschritt vor, zu zeigen, dass die Gleichung für
> n+1 gilt. Mein Ansatz:

Soweit, so gut.

> [...] Habe ich etwas
> falsch gemacht? Wo ist der Fehler? Wenn nein, wie kann man
> das dann umformen?

Ich habe dich bereits oben darauf hingewiesen: Du brauchst die Definition für den Binomialkoeffizienten.

Gruß v. Angela

Bezug
                
Bezug
Induktion: N Über K: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Do 16.11.2006
Autor: Knut_87

Hi,

danke für deine Antwort, aber auch mit der Definition komme ich nicht weiter.

Der Binomialkoeffiezient wurde bei uns rekursiv definiert, also:

(n+1)! = (n+1) * n!

leider komme ich auch damit nicht weiter :-(

ich habe das etwas umgeformt, aber weiter komm ich nicht:
[mm] \bruch{n!}{k!*(n-k)!} [/mm] + [mm] \bruch{n!*(n+1)}{k!*(n-k-1)!*(k+1)} [/mm]

toll wäre ja nunm wenn man [mm] \bruch{n!}{k!*(n-k)!} [/mm] ausklammern könnte, aber dazu müsste ich ja irgendwie aus (n-k-1)! (n-k)! machen oder aus
(n-k)! dann (n-k-1)! machen. Geht das irgendwie?

sonst kann ich das ja nur erweitern und auf einen Bruch schreiben, jedoch hilft mir das nicht weiter. Habe ich etwas übersehen?

[mm] \bruch{n!* (n-k-1)!*(k+1) + n!*(n+1) *(n-k)!}{k!*(n-k-1)!*(k+1)* (n-k)!} [/mm]

könntest du mir einen weiteren Hinweis geben?

Gruß Knut

Bezug
                        
Bezug
Induktion: N Über K: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Do 16.11.2006
Autor: angela.h.b.


> Der Binomialkoeffiezient wurde bei uns rekursiv definiert,
> also:
>  
> (n+1)! = (n+1) * n!

Das ist doch die Fakultät, nicht der Binomialkoeffizient!
Der Binomialkoeffizient ist dies: [mm] \vektor{n \\ k}. [/mm] Ohne dessen Definition wird man nicht auskommen. Wir brauchen sie, denn wenn wir nicht wissen, was mit [mm] \vektor{n \\ k} [/mm] gemeint ist, werden wir nichts beweisen können.

Abgesehen davon noch ein Wort zu Deiner Induktion.
Wenn Du eine Induktion über n machst, gehen nur die n über in n+1. Keinesfalls verändert sich k. Das hast Du falsch gemacht.
(Eigentlich dachte ich, daß ich es in meinem vorigen Post geschrieben hatte, sah aber eben das Gegenteil...)

Gruß v. Angela

Bezug
                                
Bezug
Induktion: N Über K: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Do 16.11.2006
Autor: Knut_87

Hi,

mir ist aufgefallen, was ich immer falsch gemacht habe und die  Aufgabe nun gelöst. War eigentlich gar nicht schwer.

Danke für die Hilfe

Knut

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de