www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion mit Summenzeichen
Induktion mit Summenzeichen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion mit Summenzeichen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:15 Sa 01.11.2008
Autor: Nadja1989

Aufgabe
[mm] \summe_{k=1}^{2n} [/mm] (-1)^(k+1)/k = [mm] \summe_{k=n+1}^{2n} [/mm] 1/k

Hallo!
Ist vielleicht ne ziemlich blöde Frage, aber irgednwie ist mir die Aufgabenstellung nciht ganz klar. Ich soll die Gleichugn mit vollständiger Induktion beweisen. Ist eig total einfach bei Summen. Aber irgendwie verwirrt mich hier dass über dem Summenzeichen 2n steht und rechts unter dem Summenzeichen k=n+1.
Wie ist denn jetzt mein Induktionsanfang? Für k 1 oder 2 einsetzen?!

Danke im voraus.

        
Bezug
Induktion mit Summenzeichen: Variable n
Status: (Antwort) fertig Status 
Datum: 18:17 Sa 01.11.2008
Autor: Loddar

Hallo Nadja!


Deine Induktions-Variable ist $n_$ . Da musst Du für den Induktionsanfang [mm] $\red{n} [/mm] \ = \ 1$ einsetzen.


Gruß
Loddar


Bezug
                
Bezug
Induktion mit Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 So 02.11.2008
Autor: Nadja1989

Hm, scheinbar stell ich mich doch noch etwas blöder an als ich gedacht hab!!!

Also mein induktionsanfang ist doch (-1)^(1+1)/1 = 1/1
Aber dann hab ich doch gar nicht dieses 2n über dem summenzeichen verwendet. und was bedeuter K = n+1 auf der rechten seite?
Vielleicht kann mir jemand helfen und die gleichung mal ohne summenzeichen aufschreiben?
Wär echt lieb, danke!

Bezug
                        
Bezug
Induktion mit Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 So 02.11.2008
Autor: benevonmattheis

Hallo,
zum Induktionsanfang:
machen wir es Schritt für Schritt:
Wir setzen also n=1 überall in die Behauptung ein:

linke Seite:
[mm] \summe_{k=1}^{2} \bruch{(-1)^{k+1}}{k}=\bruch{(-1)^{2}}{1}+\bruch{(-1)^{3}}{2}=1- \bruch{1}{2}=\bruch{1}{2} [/mm]

rechte Seite:
[mm] \summe_{k=2}^{2} \bruch{1}{k}=\bruch{1}{2} [/mm]

Ich bin mir nicht sicher ob ich deine Behauptung überhaupt richtig identifiziert habe, hierfür stimmt der Induktionsanfang aber schon, (den Schritt habe ich nicht überprüft).
Wie gesagt ich habe einfach immer nur für n eine 1 eingesetzt, so wurde aus deinem grlirbtrn 2n eine 2*1=2.

Gruß,
Bene

Bezug
                                
Bezug
Induktion mit Summenzeichen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 So 02.11.2008
Autor: Nadja1989

ach so^^ ja jetzt ists mir klar. hatte einfach nen total denkfehler drin. danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de