www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Induktion über Termaufbau
Induktion über Termaufbau < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion über Termaufbau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 16.05.2014
Autor: Pia90

Aufgabe
Seien [mm] \mathfrak{A}, \mathfrak{B} \tau [/mm] -Strukturen über dem Universum A bzw. B, sodass [mm] \mathfrak{A} \subseteq \mathfrak{B}. [/mm] Zeigen Sie per Induktion über den Termaufbau: Für jeden Term t und jede Belegung [mm] \beta [/mm] : var(t) [mm] \mapsto [/mm] A gilt
[mm] [\![ [/mm] t [mm] ]\!]{(\mathfrak{A},\beta)} [/mm] = [mm] [\![ [/mm] t [mm] ]\!]{(\mathfrak{B},\beta)}. [/mm]


Hallo zusammen,
ich muss die oben angegebene Aufgabe lösen, aber komme dabei nicht wirklich vorwärts, da ich noch gar nicht so wirklich verstehe, was ich habe bzw. tun muss...
Ich wäre euch sehr dankbar, wenn ihr mir weiterhelfen würdet!

Als Ansätze habe ich versucht mir folgendes zusammenzureimen, weiß aber natürlich nicht, ob das überhaupt richtig so ist...

z.z.: Für jeden Term t und jede Belegung [mm] \beta [/mm] : var(t) [mm] \mapsto [/mm] A gilt
[mm] [\![ [/mm] t [mm] ]\!]{(\mathfrak{A},\beta)} [/mm] = [mm] [\![ [/mm] t [mm] ]\!]{(\mathfrak{B},\beta)} [/mm]

IA: Für t=f [mm] \in \tau [/mm] gilt: [mm] [\![ [/mm] f [mm] ]\!]{(\mathfrak{A},\beta)} [/mm] = [mm] [\![ [/mm] f [mm] ]\!]{(\mathfrak{B},\beta)} [/mm] , da [mm] f^{\mathfrak{A}} [/mm] = [mm] f^{\mathfrak{B}} \wedge [/mm] A

IS: Für [mm] t=ft_1, [/mm] ..., [mm] t_n [/mm]
[mm] [\![ ft_1, [/mm] ..., [mm] t_n ]\!]{\mathfrak{A}} [/mm] = [mm] f^{\mathfrak{A}} ([\![ t_1 ]\!]{\mathfrak{A}}, ...[\![ t_n ]\!]{\mathfrak{A}}) [/mm] = (mit IV) [mm] f^{\mathfrak{A}} ([\![ t_1 ]\!]{\mathfrak{B}}, ...[\![ t_n ]\!]{\mathfrak{B}}) [/mm] = [mm] f^{\mathfrak{B}} ([\![ t_1 ]\!]{\mathfrak{B}}, ...[\![ t_n ]\!]{\mathfrak{B}})= [\![ ft_1, [/mm] ..., [mm] t_n ]\!]{\mathfrak{B}} [/mm]

Vielen Dank schonmal im Voraus!

Viele Grüße!

        
Bezug
Induktion über Termaufbau: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Fr 16.05.2014
Autor: hippias

Der Beweis sieht ganz gut aus, aber insbesondere der Induktionsanfang ist mir zu schwammig. Auch sind mir ein paar Schreibweisen nicht ganz klar.

Induktionsanfang: Du musst zeigen, dass [mm] $[[c]](\mathfrak{A},\beta)= [[c]](\mathfrak{B},\beta)$ [/mm] fuer jedes Konstantensymbol aus [mm] $\tau$ [/mm] und [mm] $[[v]](\mathfrak{A},\beta)= [[v]](\mathfrak{B},\beta)$ [/mm] fuer jedes Variablensymbol gilt. Warum ist das so, welche Voraussetzungen gehen ein?

Dein Induktionsschritt scheint mir richtig zu sein. Aber nur zu Sicherheit: Wieso werden die Funktionssymbole in [mm] $(\mathfrak{A},\beta)$ [/mm] und [mm] $(\mathfrak{B},\beta)$ [/mm] gleich interpretiert?



Bezug
                
Bezug
Induktion über Termaufbau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Fr 16.05.2014
Autor: Pia90

Vielen Dank schonmal für die schnelle Rückmeldung!

> Der Beweis sieht ganz gut aus, aber insbesondere der
> Induktionsanfang ist mir zu schwammig. Auch sind mir ein
> paar Schreibweisen nicht ganz klar.
>  
> Induktionsanfang: Du musst zeigen, dass
> [mm][[c]](\mathfrak{A},\beta)= [[c]](\mathfrak{B},\beta)[/mm] fuer
> jedes Konstantensymbol aus [mm]\tau[/mm] und
> [mm][[v]](\mathfrak{A},\beta)= [[v]](\mathfrak{B},\beta)[/mm] fuer
> jedes Variablensymbol gilt. Warum ist das so, welche
> Voraussetzungen gehen ein?

Ich hab noch nicht den 100%igen Durchblick, aber ich versuchs mal!
Laut Voraussetzung ist ja [mm] \mathfrak{A} \subseteq \mathfrak{B} [/mm] und [mm] \mathfrak{A}, \mathfrak{B} [/mm] sind [mm] \tau-Strukturen [/mm] . Also ist [mm] f^{\mathfrak{A}} [/mm] das A-Redukt von [mm] f^{\mathfrak{B}}, [/mm] oder?

Ich finds schwer das ganze irgendwie treffend zu formulieren und weiß nicht so ganz, wie ich es etwas weniger schwammig formulieren könnte... Hast du einen Vorschlag, wie ich es besser machen könnte?

>  
> Dein Induktionsschritt scheint mir richtig zu sein. Aber
> nur zu Sicherheit: Wieso werden die Funktionssymbole in
> [mm](\mathfrak{A},\beta)[/mm] und [mm](\mathfrak{B},\beta)[/mm] gleich
> interpretiert?
>  

Dies kommt doch auch zustande, weil [mm] \mathfrak{B} [/mm] eine [mm] \tau-Expansion [/mm] von [mm] \mathfrak{A} [/mm] ist, oder?


Bezug
                        
Bezug
Induktion über Termaufbau: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Sa 17.05.2014
Autor: hippias

Alles in Ordnung, Du scheinst zu wissen was Du tust. Allenfalls den Induktionsanfang mit den $3$ Faellen koennte man etwas mehr erlaeutern.

Bezug
                        
Bezug
Induktion über Termaufbau: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Sa 17.05.2014
Autor: Pia90

Vielen, vielen Dank!

Bezug
        
Bezug
Induktion über Termaufbau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Sa 17.05.2014
Autor: Pia90

Noch eine weitere Frage zu dem Thema...

Und zwar soll nun [mm] \tau [/mm] eine Signatur sein und [mm] \mathfrac{B} [/mm] eine [mm] \tau [/mm] - Struktur über dem Universum B.
Ich soll nun beweisen, dass für jede quantorenfreie Formel [mm] \phi \in FO(\tau), [/mm] alle Substrukturen [mm] \mathfrak{A_1}=(A_1,\tau), \mathfrak{A_2}=(A_2,\tau) [/mm] von [mm] \mathfrak{B} [/mm] und alle [mm] a_1, ...a_k \in A_1 \cap A_2 [/mm] gilt:
[mm] \mathfrak{A_1} [/mm] |= [mm] \phi (a_1, [/mm] ..., [mm] a_k) [/mm] genau dann wenn [mm] \mathfrak{A_2} [/mm] |= [mm] \phi (a_1, [/mm] ..., [mm] a_k) [/mm]

Wie genau kann ich das nun zeigen?
Ich kann sicherlich zum Teil wieder über ein Redukt argumentieren, weil es ist ja bekannt, dass [mm] \mathfrak{A_1} [/mm] und [mm] \mathfrak{A_2} [/mm] Aubstrukturen von [mm] \mathfrak{B} [/mm] sind.
Aber nun habe ich ja [mm] a_1, [/mm] ..., [mm] a_k [/mm] aus dem Schnitt von [mm] A_1 [/mm] und [mm] A_2 [/mm] ...

Hat jemand eine Idee, wie ich vorgehen könnte?

Ich hoffe, es kann mir jemand weiterhelfen! Danke schonmal!

Viele Grüße!



Bezug
                
Bezug
Induktion über Termaufbau: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 So 18.05.2014
Autor: hippias

Das kannst Du wieder per Induktion ueber den Aufbau der Formel beweisen. Dazu zeigst Du zuerste, dass alle Terme von beiden Strukturen gleich interpretiert werden; dies duerfte aus der vorherigen Aufgabe folgen. Sodann zeigst Du als Induktionsanfang die Behauptung fuer alle atomaren Formeln. Der Induktionsschritt besteht dann darin die Behauptung fuer Negationen, Konjunktionen etc. nachzuweisen. Versuch es, macht Spass!

Bezug
                        
Bezug
Induktion über Termaufbau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 So 18.05.2014
Autor: Pia90

Vielen Dank schonmal! Irgendwie stehe ich aber gerade leider ein wenig auf dem Schlauch...

> Das kannst Du wieder per Induktion ueber den Aufbau der
> Formel beweisen. Dazu zeigst Du zuerste, dass alle Terme
> von beiden Strukturen gleich interpretiert werden; dies
> duerfte aus der vorherigen Aufgabe folgen.

Ok, da kann ich also direkt auf die andere Aufgabe Bezug nehmen.

> Sodann zeigst Du
> als Induktionsanfang die Behauptung fuer alle atomaren
> Formeln. Der Induktionsschritt besteht dann darin die
> Behauptung fuer Negationen, Konjunktionen etc.
> nachzuweisen. Versuch es, macht Spass!

Von der Idee her klingt das für mich logisch, aber ich habe gerade Probleme, dass irgendwie aufs Papier zu bringen...

Bereits beim Induktionsanfang scheiter ich gerade schon und weiß absolut nicht wie ich es aufschreiben könnte... :/

Beim Induktionsschritt könnte ich doch dann sagen, dass für Boolesche Operatoren die Behauptung aus der IV folgt, denn sei z.B. [mm] \nu(a) [/mm] = [mm] \neg \phi(a) [/mm] und die Aussage gelte für [mm] \phi(a) [/mm]
[mm] \mathfrak{A_1} [/mm] |= [mm] \nu(a) [/mm] genau dann wenn [mm] \mathfrak{A_1} |\not= \phi(a) [/mm] genau dann wenn [mm] \mathfrak{A_2} |\not= \phi(a) [/mm] genau dann wenn [mm] \mathfrak{A_2} [/mm] |= [mm] \nu(a) [/mm]
Oder?

Bezug
                                
Bezug
Induktion über Termaufbau: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 So 18.05.2014
Autor: hippias

Fuer den Induktionsanfang: Sei z.B. $R$ ein $n$-stelliges Relationssymbol und [mm] $t_{i}$ [/mm] Terme. Dann ist [mm] $\mathfrak{A}_{i}\models Rt_{1}\ldots t_{n}\iff (t_{1}^{\mathfrak{A}_{i}},\ldots, t_{n}^{\mathfrak{A}_{i}})\in R^{\mathfrak{A}_{i}}$. [/mm]

Weil [mm] $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ [/mm] Unterstrukturen von [mm] $\mathfrak{B}$ [/mm] sind, ist [mm] $R^{\mathfrak{A}_{i}}= A_{i}^{n}\cap R^{\mathfrak{B}}$. [/mm] Ferner ist bereits bekannt, dass [mm] $t_{i}^{\mathfrak{A}_{1}}= t_{i}^{\mathfrak{A}_{2}}=:x_{i}$, $i=1,\ldots, [/mm] n$. Insbesondere sind diese [mm] $x_{i}\in A_{1}\cap A_{2}$, [/mm] wegen der Abgeschlossenheit der Strukturen.

Damit ist aber [mm] $(x_{1},\ldots,x_{n})\in A_{i}^{n}\cap R^{\mathfrak{B}}\iff R^{\mathfrak{B}}$. [/mm]

Insgesamt folgt [mm] $\mathfrak{A}_{1}\models Rt_{1}\ldots t_{n}\iff (t_{1}^{\mathfrak{A}_{1}},\ldots, t_{n}^{\mathfrak{A}_{1}})\in R^{\mathfrak{A}_{1}}\iff (t_{1}^{\mathfrak{A}_{1}},\ldots, t_{n}^{\mathfrak{A}_{1}})\in R^{\mathfrak{B}}\iff (t_{1}^{\mathfrak{A}_{2}},\ldots, t_{n}^{\mathfrak{A}_{2}})\in R^{\mathfrak{B}}\iff (t_{1}^{\mathfrak{A}_{2}},\ldots, t_{n}^{\mathfrak{A}_{2}})\in R^{\mathfrak{A}_{2}}\iff \mathfrak{A}_{2}\models Rt_{1}\ldots t_{n}$. [/mm]

Induktionsschritt: [mm] $\mathfrak{A}_{1}\models \neg \phi\iff$ [/mm] nicht [mm] $\mathfrak{A}_{1}\models \phi$. [/mm] Nach Ind.vor. ist [mm] $\mathfrak{A}_{1}\models \phi\iff \mathfrak{A}_{2}\models \phi$, [/mm] also [mm] $\ldots$ [/mm]



Bezug
                                        
Bezug
Induktion über Termaufbau: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Di 27.05.2014
Autor: Pia90

Vielen Dank! Du hast mir sehr weitergeholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de