www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis mit Umordnung
Induktionsbeweis mit Umordnung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis mit Umordnung: Fragestellung richtig?
Status: (Frage) beantwortet Status 
Datum: 23:02 Sa 06.11.2010
Autor: Andre85

Aufgabe 1
Es seien [mm]x_{1}, x_{2},..., x_{n} [/mm] positive reelle Zahlen und [mm]y_{1}, y_{2},..., y_{n}[/mm] eine beliebige Umordnung dieser Zahlen. Beweisen Sie:
[mm]\summe_{n=1}^{k}\bruch{x_{k}}{y_{k}} \geq n[/mm].

Aufgabe 2
Zusatz (schwieriger): Setzt man [mm]x_{n+1} := x_{1}[/mm], dann gilt auch:
[mm]\summe_{k=1}^{n} \bruch{x_{k+1}}{x_{k}} \leq \summe_{k=1}^{n} (\bruch{x_{k}}{x_{k+1}})^2[/mm]
Hinweis: Benutzen Sie die Ungleichung vom geometrischen und arithmetischen Mittel!

Okay, ich check die Aufgabe1 nicht so ganz, deswegen schreib ich hier.

Also, nur zu Aufgabe Eins:
Ich würde gerne wie immer n = 1 wählen, aber hier wirds wohl eher k = 1. (Induktionsanfang) Dann steht da doch (Summenzeichen kann ja weg, weil von 1 bis 1):
eine positive reele Zahl durch irgendeine andere ist größer/gleich 1.
ja?
Aber das stimmt doch schon nicht. Wenn der Nenner größer als der Zähler ist, ist der Bruch doch kleiner als 1.

Sind die Zahlen x geordnet? (Ohne das das da steht)?
Sind n und k vertauscht? (Beim Summenzeichen)?

Oder versteh ich die Aufgabe nicht?

Vielen Dank für Tipps und Tricks zur Lösung dieser Aufgabe!

Die Zweite Aufgabe hab ich auch eingetippt, falls man dadurch auf 1. die vertauschten Indizes und 2. einen Lösungsansatz kommen könnte.

Viele Grüße und einen schönen Abend noch,
Andre


        
Bezug
Induktionsbeweis mit Umordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 So 07.11.2010
Autor: ullim

Hi,

> Es seien [mm]x_{1}, x_{2},..., x_{n}[/mm] positive reelle Zahlen und
> [mm]y_{1}, y_{2},..., y_{n}[/mm] eine beliebige Umordnung dieser
> Zahlen. Beweisen Sie:
>  [mm]\summe_{n=1}^{k}\bruch{x_{k}}{y_{k}} \geq n[/mm].

Eine Frage, sind die Indizes richtig benannt?

[mm] \summe_{n=1}^{k}\bruch{x_{k}}{y_{k}}\ge [/mm] n bedeutet ja, da in der Summe keine n Abhängigkeit besteht


[mm] k*\bruch{x_{k}}{y_{k}}\ge [/mm] n





Bezug
        
Bezug
Induktionsbeweis mit Umordnung: Tipp
Status: (Antwort) fertig Status 
Datum: 11:09 So 07.11.2010
Autor: Pauli90

hi,
also erstmal sind n und k sehr wahrscheinlich vertauscht sonst hätte der beweis wenig sinn
dann ist es ziemlich ungünstig diese ungleichung mit vollständiger induktion zu zeigen.
du hast als hinweis bekommen das arithmetische und geometrische mittel zu benutzen also würde ich vorschlagen du tust das auch.
es ist vom prinzip her ganz einfach
du dividierst die ganze ungleichung durch n, dann erhälst du :
[img][mm] \bruch{\summe_{k=1}^{n}\bruch{x_{k}}{y_{k}}}{n}\ge1[/mm] [url=1]

jetzt solltest du eigendlich erkennen das man mit dem term auf der linken seite die ungleichung vom arithmetischen und geometrischen mittel anwenden kann. versuch es mal.

bedenke dabei das die menge [mm] y_{k} [/mm] eine Umordnung von [mm] x_{k} [/mm] ist also eine permutation. das bedeutet das die beiden mengen aber identische elemente haben halt nur anders angeordnet. überleg dir dazu was aus dem quotienten der beiden produkte passiert (Tipp: Kommutativität)

viel erfolg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de