www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Induktionsbeweis rekurs. Folge
Induktionsbeweis rekurs. Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis rekurs. Folge: Hilfe bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:27 Sa 07.04.2012
Autor: hello_world

Aufgabe
Sei eine Folge [mm] ${a_n}$ [/mm] rekursiv durch [mm] $a_n=\frac{1}{2}(a_{n-1}+a_{n-2})$ [/mm] für [mm] $n\ge3$ [/mm] definiert. Die ersten Glieder sind [mm] $a_1=0,\ a_2=1$. [/mm] Beweisen Sie, dass [mm] $\limes_{n\rightarrow\infty}{a_n}=\frac{2}{3}$ [/mm] ist.

Hinweis: Beweisen Sie zunächst mit vollständiger Induktion, dass [mm] $a_n-\frac{2}{3}=(-\frac{2}{3})\cdot(-\frac{1}{2})^{n-1}$ [/mm] gilt.

Was ich bisher gemacht habe:

IV: [mm] $\frac{1}{2}(a_{n-1}+a_{n-2})$ [/mm]

IA für $n=3$: [mm] $a_3=\frac{1}{2}(a_{3-1}+a_{3-2})=\frac{1}{2}(a_2+a_1)=\frac{1}{2}(1+0)=\frac{1}{2}=\frac{2}{3}(1-(-\frac{1}{2})^2)$ [/mm]

IS: [mm] $a_{n+1}=\frac{1}{2}(a_{(n+1)-1}+a_{(n+1)-2})=\frac{1}{2}(a_{n}+a_{n-1})=\frac{1}{2}((IV)+a_{n-1})=\frac{1}{2}((\frac{1}{2}(a_{n-1}+a_{n-2}))+a_{n-1})$ [/mm]

Aber jetzt weiß ich leider nicht mehr wie ich weiter machen soll. Kann mir jemand helfen?


        
Bezug
Induktionsbeweis rekurs. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Sa 07.04.2012
Autor: fred97


> Sei eine Folge [mm]{a_n}[/mm] rekursiv durch
> [mm]a_n=\frac{1}{2}(a_{n-1}+a_{n-2})[/mm] für [mm]n\ge3[/mm] definiert. Die
> ersten Glieder sind [mm]a_1=0,\ a_2=1[/mm]. Beweisen Sie, dass
> [mm]\limes_{n\rightarrow\infty}{a_n}=\frac{2}{3}[/mm] ist.
>  
> Hinweis: Beweisen Sie zunächst mit vollständiger
> Induktion, dass
> [mm]a_n-\frac{2}{3}=(-\frac{2}{3})\cdot(-\frac{1}{2})^{n-1}[/mm]
> gilt.
>  Was ich bisher gemacht habe:
>  
> IV: [mm]\frac{1}{2}(a_{n-1}+a_{n-2})[/mm]

Das ist nicht die IV. Sondern

   für ein n [mm] \in \IN [/mm] gelte: [mm] a_n-\frac{2}{3}=(-\frac{2}{3})\cdot(-\frac{1}{2})^{n-1} [/mm]

>  
> IA für [mm]n=3[/mm]:
> [mm]a_3=\frac{1}{2}(a_{3-1}+a_{3-2})=\frac{1}{2}(a_2+a_1)=\frac{1}{2}(1+0)=\frac{1}{2}=\frac{2}{3}(1-(-\frac{1}{2})^2)[/mm]


??? Prüfe nach ob

          [mm] a_n-\frac{2}{3}=(-\frac{2}{3})\cdot(-\frac{1}{2})^{n-1} [/mm]

für n=3 richtig ist

Der IA kommt vor der IV !!

>  
> IS:
> [mm]a_{n+1}=\frac{1}{2}(a_{(n+1)-1}+a_{(n+1)-2})=\frac{1}{2}(a_{n}+a_{n-1})=\frac{1}{2}((IV)+a_{n-1})=\frac{1}{2}((\frac{1}{2}(a_{n-1}+a_{n-2}))+a_{n-1})[/mm]

Mach das nochmal mit der richtigen IV.

FRED

>  
> Aber jetzt weiß ich leider nicht mehr wie ich weiter
> machen soll. Kann mir jemand helfen?
>    


Bezug
                
Bezug
Induktionsbeweis rekurs. Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Sa 07.04.2012
Autor: hello_world

Danke für deine Antwort!

Hier also nochmals der richtige IA für $n=3$:
[mm] $a_{3}-\frac{2}{3}=(-\frac{2}{3})\cdot(-\frac{1}{2})^{2}\Leftrightarrow\frac{1}{2}-\frac{2}{3}=(-\frac{2}{3})\cdot(-\frac{1}{2})^{2}\Leftrightarrow-\frac{1}{6}=-\frac{1}{6}$ [/mm]

Die IV ist somit:
[mm] $a_{n}-\frac{2}{3}=(-\frac{2}{3})\cdot(-\frac{1}{2})^{n-1}$ [/mm]

Das nun eingesetzt in meinen IS aus dem ersten Post ergibt:
[mm] $a_{n+1}=\frac{1}{2}(((-\frac{2}{3})\cdot(-\frac{1}{2})^{n-1}+\frac{2}{3})+a_{n-1})$ [/mm]

Aber wie geht es jetzt weiter? Was mach ich mit dem übrig gebliebenen [mm] $a_{n-1}$? [/mm]


Bezug
                        
Bezug
Induktionsbeweis rekurs. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Sa 07.04.2012
Autor: leduart

Hallo
du musst den Induktionsanfang für 2 aufeinanderfolgende glieder 2 und 3 oder 3 und 4 zeigen, dann ind. vor richtig für n UND n-1
dann [mm] a_n [/mm] und a:{n-1} einsetzen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de