www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweise
Induktionsbeweise < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Sa 01.12.2012
Autor: tmili

Aufgabe
Zeigen Sie:
a) für alle n [mm] \in \IN [/mm] gilt: [mm] (1+1/n)^n [/mm] < (1+1/(n+1))^(n+1)
b) für alle n [mm] \in \IN [/mm] \ [mm] \{1\} [/mm] gilt: [mm] (1+1/(n-1))^n [/mm] > (1+1/n)^(n+1)

Hallo, ich bin im ersten Semster Analysis und das ist die erste Aufgabe bei der ich selbst nicht mehr weiterkomme und bin dementsprechend verzweifelt :(
ich denke wenn man a) gelöst hat wird b) den gleichen trick in sich haben, also habe ich mir bis jetzt nur a) angeschaut, aber komme auf keinen grünen zweig..
habe mir beispiele  mit n=1,2,3 gemacht und sehe das es funktioniert, aber natürlich nicht sicher ob es bei n=1000 auch noch geht..
nun dachte ich an induktion, aber komme hier nie über den induktionsanfang hinaus..dieser funktioniert ganz eindeutig da 2<2,25, die voraussetzung ist dann ja die aufgabenstellung für alle n, aber wenn ich jetzt den induktionsschritt von n nach n+1 machen will komm ich ja nie dazu die voraussetzung zu verwenden..ich wäre euch unendlich dankbar, wenn mir jemand einen ansatz schicken würde! danke im voraus!!

        
Bezug
Induktionsbeweise: Teil a
Status: (Antwort) fertig Status 
Datum: 19:35 Sa 01.12.2012
Autor: ullim

Hi,

[mm] \left(1+\bruch{1}{n}\right)^n\le \left(1+\bruch{1}{n+1}\right)^{n+1} \gdw [/mm]

[mm] \left(1+\bruch{1}{n}\right)^{-1}\le \left(\bruch{1+\bruch{1}{n+1}}{1+\bruch{1}{n}}\right)^{n+1} [/mm] wegen

[mm] \left(1+\bruch{1}{n}\right)^{-1}=1-\bruch{1}{n+1} [/mm] und

[mm] \bruch{1+\bruch{1}{n+1}}{1+\bruch{1}{n}}=1-\bruch{1}{(n+1)^2} [/mm]

folgt die Behauptung aus der Bernoullischen Ungleichung.

Bezug
                
Bezug
Induktionsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Sa 01.12.2012
Autor: tmili

Hallo ullim:)
Vielen Dank für deine schnelle Hilfe!! Habe nach kurzer Zeit alles nachvollziehen können, leider wäre ich glaube ich nie selbst auf sowas gekommen :( Ich versuche mich gleich an b)
Liebe Grüße

Bezug
                
Bezug
Induktionsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Sa 01.12.2012
Autor: tmili

hallo ullim,
das ist mir jetzt echt unangenehm, aber ich sitze wie mit einem brett vor dem kopf vor b)..das ist das problem mit dem selber draufkommen..ich weiß einfach nicht wo ich mit umformen anfangen soll, damit ich am schluss ne schöne form bekomm um die bernoullische ungleichung anzuwenden :( weißt du zum beispiel einfach, dass [mm] (1+\bruch{1}{n})^-1 [/mm] = [mm] 1-\bruch{1}{n+1} [/mm] gibt oder musst du das auch ausrechnen und merkst dann das es stimmt?
Vielen Dank schonmal wenn du dich mir nochmal annimmst!!

Bezug
                        
Bezug
Induktionsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 So 02.12.2012
Autor: ullim

Hi,

[mm] \left(1+\bruch{1}{n}\right)^{n+1}<\left(1+\bruch{1}{n-1}\right)^n \gdw [/mm]

[mm] 1+\bruch{1}{n}<\left(\bruch{1+\bruch{1}{n-1}}{1+\bruch{1}{n}}\right)^n=\left(\bruch{n^2}{n^2-1}\right)^n=\left(1+\bruch{1}{n^2-1}\right)^n [/mm]

Und jetzt weiter mit der Bernoullischen Ungleichung.

Bezug
                                
Bezug
Induktionsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 So 02.12.2012
Autor: tmili

guten morgen :)
erste umformung ist mir wieder klar..und da die bernoulli ungleichung ja 1+nx < [mm] (1+x)^n [/mm] ist muss ja in diesem fall x:=  [mm] \bruch {1}{n^2-1} [/mm] und n:=n.
damit muss ja jetzt aber [mm] 1+nx=1+n*\bruch{1}{n^2-1} [/mm] und das wiederum sollte ja das gleiche sein wie 1+ [mm] \bruch{1}{n}...das [/mm] stimmt ja aber nicht -> also durch einsetzen verschiedener n ist das ja deutlich :( steh ich schon wieder auf dem schlauch?

Bezug
                                        
Bezug
Induktionsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 So 02.12.2012
Autor: ullim

Hi,

[mm] 1+\bruch{n}{n^2-1}> 1+\bruch{n}{n^2}=1+\bruch{1}{n} [/mm]

Bezug
                                                
Bezug
Induktionsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 So 02.12.2012
Autor: tmili

Vielen Dank und einen schönen Sonntag!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de