www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Induktiver beweis m. Fibonacci
Induktiver beweis m. Fibonacci < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktiver beweis m. Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Fr 19.05.2006
Autor: Funzi

Aufgabe
Zeigen Sie: [mm] \summe_{k=0}^{n} \vektor{n \\ k}F_k=F_{2n} [/mm]

Diese Aufgabe stammt aus WGMS IV. Ich habe mich an dem induktiven Beweis über n versucht. [mm] F_n [/mm] bezeichnet die Fibonacci-Zahl, wobei [mm] F_0=1 [/mm] und [mm] F_1=1 [/mm] (wir beginnen also bei 0)
Hier mein Ansatz:
[mm] \summe_{k=0}^{n+1} \vektor{n+1 \\ k}F_k=F_{2(n+1)} [/mm]
[mm] \gdw \summe_{k=0}^{n}(\vektor{n+1 \\ k}F_k) [/mm] + [mm] \vektor{n+1 \\ n+1}F_{n+1}=F_{2(n+1)} [/mm]
[mm] \gdw \summe_{k=0}^{n}(\vektor{n+1 \\ k}F_k) [/mm] + [mm] F_{n+1}=F_{2(n+1)} [/mm]
[mm] \gdw \summe_{k=0}^{n}(\vektor{n \\ k-1}F_k [/mm] + [mm] \vektor{n \\ k+}F_k) [/mm] + [mm] F_{n+1}=F_{2(n+1)} [/mm]
[mm] \gdw \summe_{k=0}^{n}(\vektor{n \\ k-1}F_k) [/mm] + [mm] \summe_{k=0}^{n}(\vektor{n \\ k}F_k) [/mm] + [mm] F_{n+1}=F_{2(n+1)} [/mm]
(IA) [mm] \gdw \summe_{k=0}^{n}(\vektor{n \\ k-1}F_k) [/mm] + [mm] F_{2n} [/mm] + [mm] F_{n+1}=F_{2(n+1)} [/mm]

Ich habe dann noch viel rumprobiert, aber ich bekomme die Summe nicht weg. Darüber hinaus haben wir auch noch keine Rechenregeln für die Fibonacci-Zahlen an der Hand. Bei Wikipedia sind ja einige aufgezählt, die man sicher gut verwenden kann, wenn erst mal alle Summenzeichen eliminiert sind. Kann mir von euch irgendjemand den rettenden Tipp geben?

Danke schon mal
Funzi

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktiver beweis m. Fibonacci: Anleitung
Status: (Antwort) fertig Status 
Datum: 09:48 Sa 20.05.2006
Autor: steff12

Hallo,

versuche doch einfach mal, folgende allgemeinere Aussage per Induktion nach n zu beweisen:

Für alle n und m [mm] \in \IN_0 [/mm] gilt:

[mm] \summe_{k=0}^{n} \vektor{n\\k} F_{k+m} [/mm] = [mm] F_{2n+m} [/mm]

Das geht genau wie Du das versucht hast, passe allerdings mit dem Summanden zu k=0 auf...



Bezug
                
Bezug
Induktiver beweis m. Fibonacci: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 Sa 20.05.2006
Autor: Funzi

Mit diesem Kniff konnte ich es dann sehr gut lösen.

Vielen Dank!
  Funzi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de