www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Induzierte Topologie
Induzierte Topologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induzierte Topologie: Hilfe bei Beweis
Status: (Frage) beantwortet Status 
Datum: 21:14 Mo 09.07.2018
Autor: Stala

Aufgabe
Sei [mm] \( [/mm] Y = [mm] \mathbb{N} \cup\infty \) [/mm] die Menge der natürlichen Zahlen, die um das Symbol [mm] \( \infty \) [/mm] erweitert wurde. Wir definieren den topologischen Raum [mm] (Y,\mathcal{S}) [/mm] wie folgt:
[mm] \( \mathcal{S}= \{ A \subset Y \, | \, \infty \in A \rightarrow Y \backslash A \, \, \text{endlich} \} \) [/mm]

Setzt man [mm] \( \frac{1}{\infty} [/mm] = 0 [mm] \), [/mm] wo wird die Topologie [mm] \( \mathcal{S} \) [/mm] durch die Metrik [mm] \( [/mm] d(x,y) = [mm] \lvert \frac{1}{x} [/mm] - [mm] \frac{1}{y} \rvert \) [/mm] induziert.

Dies ist keine Übung, sondern wird in einem topolgischen Beweis verwendet. Weitere Erläuterung gibt es wegen Offensichtlichkeit nicht.

Ich verstehe nur nicht, warum diese Metrik die Topologie induziert. Nach meinem Verständnis sind alle Teilmengen A [mm] \subset [/mm] Y offen, die [mm] \( \infty \) [/mm] nicht enthalten sowie diejenigen, die [mm] \( \infty \) [/mm] enthalten, dann aber  Y [mm] \backslash [/mm] A  endlich ist, also sind insbesondere alle Einzelpunkte offen.

Wie aber soll z.B. eine offene Kugel S (2,r) = [mm] \{ x \in Y, \, | \quad \lvert \frac{1}{2} - \frac{1}{x}\rvert < r \} [/mm]   aussehen, sodass [mm] \( [/mm] S(2,r) [mm] \subset \{2 \} \)? [/mm]

Ich stehe hier etwa auf dem Schlauch, kann mir jemand da helfen?

Viele Grüße



        
Bezug
Induzierte Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mo 09.07.2018
Autor: ChopSuey

Hallo Stala,

> Sei [mm]\([/mm] Y = [mm]\mathbb{N} \cup\infty \)[/mm] die Menge der
> natürlichen Zahlen, die um das Symbol [mm]\( \infty \)[/mm]
> erweitert wurde. Wir definieren den topologischen Raum
> [mm](Y,\mathcal{S})[/mm] wie folgt:
>  [mm]\( \mathcal{S}= \{ A \subset Y \, | \, \infty \in A \rightarrow Y \backslash A \, \, \text{endlich} \} \)[/mm]
>  

die Notation ist etwas ungewöhnlich, aber gemeint ist sicher die sog. kofinite Topologie (über [mm] $\IN$). [/mm] Sie erfüllt das [mm] $T_0$ [/mm] Trennungsaxiom, ist aber kein Hausdorff-Raum, also nicht [mm] $T_2$. [/mm] Und das ist ein Problem. Denn eine wesentliche Eigenschaft der Metrisierbarkeit ist das Hausdorffsche Trennungsaxiom.


>  
> Ich verstehe nur nicht, warum diese Metrik die Topologie
> induziert.
>  

Ich auch nicht, und das tut sie auch nicht, wenn wir von der kofiniten Topologie reden da das Hausdorffsche TrennungsAxiom [mm] $T_2$ [/mm] nicht erfüllt wird. Die kofinite Topologie ist durch eine Metrik jedenfalls nicht induzierbar.

LG,
ChopSuey



Bezug
                
Bezug
Induzierte Topologie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:13 Di 10.07.2018
Autor: Stala

Hallo,

vielen Dank, aber bei [mm] \mathcal{S} [/mm] soll es sich nicht um die kofinite Topologie handeln, die ist an anderer Stelle des Kurses definiert über:

[mm] \mathcal{T} [/mm] = [mm] \{ A \subset X \quad | \quad X \backslash A \quad \text{endlich} \} [/mm]
und auch als nicht metrisierbar bewiesen.

Anders herum gefragt: welche Topologie induziert denn die Metrik d(x,y) = [mm] \lvert \frac{1}{x} [/mm] - [mm] \frac{1}{y} \rvert [/mm] auf der Menge Y = [mm] \mathbb{N} \cup \infty [/mm]   ?

Welches sind die offenen Mengen? Vielleicht komme ich ja auf diesem Weg dahinter, wie die Topologie [mm] \mathcal{S} [/mm]   zu verstehen ist?

Viele Grüße

Bezug
                        
Bezug
Induzierte Topologie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:49 Di 10.07.2018
Autor: fred97


> Hallo,
>  
> vielen Dank, aber bei [mm]\mathcal{S}[/mm] soll es sich nicht um die
> kofinite Topologie handeln, die ist an anderer Stelle des
> Kurses definiert über:
>  
> [mm]\mathcal{T}[/mm] = [mm]\{ A \subset X \quad | \quad X \backslash A \quad \text{endlich} \}[/mm]
>  
> und auch als nicht metrisierbar bewiesen.
>  
> Anders herum gefragt: welche Topologie induziert denn die
> Metrik d(x,y) = [mm]\lvert \frac{1}{x}[/mm] - [mm]\frac{1}{y} \rvert[/mm] auf
> der Menge Y = [mm]\mathbb{N} \cup \infty[/mm]   ?
>  
> Welches sind die offenen Mengen? Vielleicht komme ich ja
> auf diesem Weg dahinter, wie die Topologie [mm]\mathcal{S}[/mm]   zu
> verstehen ist?
>  
> Viele Grüße


Hallo Stala,

Du hast in Deinem ersten Post geschrieben


$ [mm] \( \mathcal{S}= \{ A \subset Y \, | \, \infty \in A \rightarrow Y \backslash A \, \, \text{endlich} \} \) [/mm] $

Was bedeutet  [mm] \rightarrow [/mm] ?

Bezug
                                
Bezug
Induzierte Topologie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Di 10.07.2018
Autor: Stala

Das sollte ein Implikationspfeil sein: [mm] \Rightarrow [/mm]

also Wenn A, dann B : A [mm] \Rightarrow [/mm] B

so wird es im Kurs zumindest verwendet.

Bezug
                                        
Bezug
Induzierte Topologie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Di 10.07.2018
Autor: fred97


> Das sollte ein Implikationspfeil sein: [mm]\Rightarrow[/mm]
>  
> also Wenn A, dann B : A [mm]\Rightarrow[/mm] B
>  
> so wird es im Kurs zumindest verwendet.


Wir haben also:


$ [mm] \( \mathcal{S}= \{ A \subset Y \, | \, \infty \in A \rightarrow Y \backslash A \, \, \text{endlich} \} \) [/mm] $.

Dann ist aber nur für Mengen $A [mm] \subset [/mm] Y$ mit $ [mm] \infty \in [/mm] A $ klar, ob sie zu [mm] \mathca{S} [/mm] gehören oder nicht. Ist $ Y [mm] \setminus [/mm] A$ endlich, so gehört A zu [mm] \mathcal{S}, [/mm] anderenfalls nicht.

Welche Teilmengen von [mm] \IN [/mm] gehören zu [mm] \mathcal{S} [/mm] ? Mir ist das jedenfalls nicht klar. Mit obiger Def. von [mm] \mathcal{S} [/mm] stimmt was nicht.


Bezug
                                                
Bezug
Induzierte Topologie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Di 10.07.2018
Autor: Stala

Eben dies ist für mich auch unklar.

Vielleicht finde ich an der Uni noch was raus, ansonsten bleibt der Beweis für mich unklar...

(Ziel war es zu zeigen, dass aus der Folgenbestimmtheit von (X, [mm] \mathcal{T}) [/mm] zu schlussfolgern, dass (X, [mm] \mathcal{T}) [/mm] Quotient eines metrisierbaren topologischen Raums ist.)

Bezug
                        
Bezug
Induzierte Topologie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Di 17.07.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 02m 7. HJKweseleit
UAnaR1FolgReih/Mehrere Grenzwerte Polynom
Status vor 6h 58m 1. Riesenradfahrrad
SPhy/KETTERLE-Versuch
Status vor 7h 12m 5. Riesenradfahrrad
Atom- und Kernphysik/Bragg-Reflexion
Status vor 8h 58m 2. fred97
UAnaR1FunkStetig/Delta-Epsilon Kriterium
Status vor 14h 34m 2. hippias
Algebra/Isomorph
^ Seitenanfang ^
www.vorhilfe.de