www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Infimum/ Supremum
Infimum/ Supremum < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum/ Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Di 22.07.2008
Autor: domenigge135

Hallo. Ich habe mal eine Frage bezüglich Supremum und Infimum. Meiner Meinung nach waren das doch Hoch und Tiefpunkte, welche nicht wirklich angenommen werden. Ich habe als Beispiel mal die Aufgabe...

[mm] f(x)=\bruch{x^2}{x^2+1} [/mm] Polynomdivision bringt mich auf [mm] 1-\bruch{1}{x^2+1} [/mm]

Was ich nun machen würde, ist den Grenzwert von [mm] 1-\bruch{1}{x^2+1} [/mm] zu berechnen. Das wäre ja dann [mm] \limes_{x\rightarrow\infty}1=1 [/mm] und [mm] \limes_{x\rightarrow\infty}-\bruch{1}{x^2+1}=0 [/mm]
Bzw. 1-0. Weshalb ich sagen würde, dass das Supremum 1 wäre. Infimum gibt es nicht.

MFG domenigge135

        
Bezug
Infimum/ Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Di 22.07.2008
Autor: abakus


> Hallo. Ich habe mal eine Frage bezüglich Supremum und
> Infimum. Meiner Meinung nach waren das doch Hoch und
> Tiefpunkte, welche nicht wirklich angenommen werden. Ich
> habe als Beispiel mal die Aufgabe...

Hallo,
da gibt es grundlegende Unterschiede.
Ein Punkt besitzt (im kartesischen KS) eine x- und eine y-Koordinate.
Eine Stelle (z.B. Nullstelle, Extremstelle) ist nur die x-Koordinate eines bestimmten Punkte.
Ein Funktionswert ist nur die y-Koordinate.
Supremum und Infimum können Funktionswerte sein (aber keine "Punkte").
Wenn eine Funktion ein Maximum (also einen maximalen Funktionswert) bzw. ein Minimum besitzt, dann gilt Maximum = Supremum bzw. Minimum = Infimum.

>  
> [mm]f(x)=\bruch{x^2}{x^2+1}[/mm] Polynomdivision bringt mich auf
> [mm]1-\bruch{1}{x^2+1}[/mm]
>  
> Was ich nun machen würde, ist den Grenzwert von
> [mm]1-\bruch{1}{x^2+1}[/mm] zu berechnen. Das wäre ja dann
> [mm]\limes_{x\rightarrow\infty}1=1[/mm] und
> [mm]\limes_{x\rightarrow\infty}-\bruch{1}{x^2+1}=0[/mm]
>  Bzw. 1-0. Weshalb ich sagen würde, dass das Supremum 1
> wäre. Infimum gibt es nicht.

Falsch. Die Funktionswerte können für [mm] f(x)=\bruch{x^2}{x^2+1} [/mm] "nach oben" beliebig nah an 1 herangehen, ohne 1 zu erreichen.
Damit gibt es kein Maximum, wohl aber ein (nicht im Wertebereich liegendes) Supremum 1.
(Maximum ist nach Definition die kleinste obere Schranke).
Infimum und gleichzeitig Minimum ist 0.
Gruß Abakus



>  
> MFG domenigge135


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de