www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Infimum und Supremum
Infimum und Supremum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum und Supremum: Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:06 Mo 26.10.2015
Autor: rsprsp

Aufgabe
Bestimmen Sie Infimum, Supremum, Minimum und Maximum der folgenden Mengen, falls diese existieren:

[mm] M_1 [/mm] = { x [mm] \in \IR [/mm] | [mm] 5x^2 [/mm] − 30 ≤ −5x }

Ich habe jetzt umgeformt:

[mm] 5x^2 [/mm] − 30 ≤ −5x    | +5x
[mm] 5x^2 [/mm] + 5x -30 ≤ 0  | :5
[mm] x^2 [/mm] + x - 6 ≤ 0

Die Nullstellen der Funktion [mm] x^2 [/mm] + x - 6 sind [mm] x_1 [/mm] = 3 [mm] x_2 [/mm] = -2

Könnte mir jemand mal helfen wie ich das Infimum, Supremum, Minimum und Maxiumum beweise ?


        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 26.10.2015
Autor: DieAcht


> Die Nullstellen der Funktion [mm]x^2[/mm] + x - 6 sind [mm]x_1[/mm] = 3 [mm]x_2[/mm] = -2

Du meinst [mm] $x_1=-3$ [/mm] und [mm] $x_2=2$. [/mm]

> Könnte mir jemand mal helfen wie ich das Infimum,
> Supremum, Minimum und Maxiumum beweise ?

Wie sieht denn nun [mm] M_1 [/mm] aus?


Gruß
DieAcht

Bezug
                
Bezug
Infimum und Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Mo 26.10.2015
Autor: rsprsp

[mm] M_1 [/mm] = {-3,2}

Dann ist [mm] min(M_1)=inf(M_1)=-3 [/mm] und [mm] max(M_1)=max(M_1)=2 [/mm] ?

Bezug
                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mo 26.10.2015
Autor: DieAcht

Sorry, ich war zu voreilig.

> [mm]M_1[/mm] = {-3,2}

Es ist

      [mm] $\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}$. [/mm]

Nun überlege noch einmal bzgl.

      [mm] $M_1=\{x\in\IR\mid 5x^2-30\le -5x\}$. [/mm]

Bezug
                                
Bezug
Infimum und Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mo 26.10.2015
Autor: rsprsp


> Sorry, ich war zu voreilig.
>  
> > [mm]M_1[/mm] = {-3,2}
>  
> Es ist
>  
> [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  
> Nun überlege noch einmal bzgl.
>  
> [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].


Es ist [mm] min(M_1)=inf(M_1)=-3 [/mm] und [mm] max(M_1)=max(M_1)=2, [/mm]
da [mm] 5x^2-30\le [/mm] -5x => [mm] 5x^2+5x-30 \le [/mm] 0. Somit bewegt sich die Funktion im Bereich [mm] x\le [/mm] 0, also -3 [mm] \le [/mm] y [mm] \le [/mm] 2

Bezug
                                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mo 26.10.2015
Autor: DieAcht


> > Sorry, ich war zu voreilig.
>  >  
> > > [mm]M_1[/mm] = {-3,2}
>  >  
> > Es ist
>  >  
> > [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  >  
> > Nun überlege noch einmal bzgl.
>  >  
> > [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].
>
>
> Es ist [mm]min(M_1)=inf(M_1)=-3[/mm] und [mm]max(M_1)=max(M_1)=2,[/mm]

Du meinst [mm] $\max(M_1)=\sup(M_1)=2$. [/mm]

Begründung?

>  da [mm]5x^2-30\le[/mm] -5x => [mm]5x^2+5x-30 \le[/mm] 0.

Ja.

> Somit bewegt sich die Funktion im Bereich [mm]x\le[/mm] 0,

Diesem Argument kann ich leider nicht folgen.

> also -3 [mm]\le[/mm] y [mm]\le[/mm] 2

Ja, es gilt [mm] $M_1=\{y\in\IR\mid -3\le y\le 2\}=[-3,2]$. [/mm]

Bezug
                                                
Bezug
Infimum und Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Mo 26.10.2015
Autor: rsprsp


> > > Sorry, ich war zu voreilig.
>  >  >  
> > > > [mm]M_1[/mm] = {-3,2}
>  >  >  
> > > Es ist
>  >  >  
> > > [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  >  >  
> > > Nun überlege noch einmal bzgl.
>  >  >  
> > > [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].
> >
> >
> > Es ist [mm]min(M_1)=inf(M_1)=-3[/mm] und [mm]max(M_1)=max(M_1)=2,[/mm]
>  
> Du meinst [mm]\max(M_1)=\sup(M_1)=2[/mm].
>  
> Begründung?
>  
> >  da [mm]5x^2-30\le[/mm] -5x => [mm]5x^2+5x-30 \le[/mm] 0.

>
> Ja.
>  
> > Somit bewegt sich die Funktion im Bereich [mm]x\le[/mm] 0,
>  
> Diesem Argument kann ich leider nicht folgen.

Ich meinte, dass die Funktion auf den Argument beschränkt ist.

>  
> > also -3 [mm]\le[/mm] y [mm]\le[/mm] 2
>
> Ja, es gilt [mm]M_1=\{y\in\IR\mid -3\le y\le 2\}=[-3,2][/mm].


Habe noch eine Menge
[mm] M_2 [/mm] = [mm] \bruch{x^2-9}{x-5} \ge [/mm] 2
Die Nullstellen von [mm] x^2-9 [/mm] sind [mm] x_1 [/mm] = 3 und [mm] x_2 [/mm] = -3 und von x-5, [mm] x_3 [/mm] = 5
Also ist die Funktion [mm] \bruch{x^2-9}{x-5} [/mm] bei x=5 nicht definiert
D.h. [mm] M_2 [/mm] = [mm] (5,\infty) [/mm]
D.h. [mm] inf(M_2)=5 min(M_2), max(M_2) [/mm] und [mm] sup(M_2) [/mm] sind nicht definiert?

Wie kann ich das noch besser begründen ?


Bezug
                                                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 26.10.2015
Autor: leduart

Auch deine neue meng würde ich auf < bzw >0 umschreiben. mit der Fallunterscheidung x<5 und x>5
Gruß leduart

Bezug
                                                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Di 27.10.2015
Autor: fred97


> > > > Sorry, ich war zu voreilig.
>  >  >  >  
> > > > > [mm]M_1[/mm] = {-3,2}
>  >  >  >  
> > > > Es ist
>  >  >  >  
> > > > [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  >  >  >  
> > > > Nun überlege noch einmal bzgl.
>  >  >  >  
> > > > [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].
> > >
> > >
> > > Es ist [mm]min(M_1)=inf(M_1)=-3[/mm] und [mm]max(M_1)=max(M_1)=2,[/mm]
>  >  
> > Du meinst [mm]\max(M_1)=\sup(M_1)=2[/mm].
>  >  
> > Begründung?
>  >  
> > >  da [mm]5x^2-30\le[/mm] -5x => [mm]5x^2+5x-30 \le[/mm] 0.

> >
> > Ja.
>  >  
> > > Somit bewegt sich die Funktion im Bereich [mm]x\le[/mm] 0,
>  >  
> > Diesem Argument kann ich leider nicht folgen.
>  
> Ich meinte, dass die Funktion auf den Argument beschränkt
> ist.
>  
> >  

> > > also -3 [mm]\le[/mm] y [mm]\le[/mm] 2
> >
> > Ja, es gilt [mm]M_1=\{y\in\IR\mid -3\le y\le 2\}=[-3,2][/mm].
>
>
> Habe noch eine Menge
>  [mm]M_2[/mm] = [mm]\bruch{x^2-9}{x-5} \ge[/mm] 2
>  Die Nullstellen von [mm]x^2-9[/mm] sind [mm]x_1[/mm] = 3 und [mm]x_2[/mm] = -3 und
> von x-5, [mm]x_3[/mm] = 5
>  Also ist die Funktion [mm]\bruch{x^2-9}{x-5}[/mm] bei x=5 nicht
> definiert
>  D.h. [mm]M_2[/mm] = [mm](5,\infty)[/mm]


Wieso ???  Das geht mir zu schnell. Falsch ist es auch. Z.B. ist 1 [mm] \in M_2 [/mm]

FRED


> D.h. [mm]inf(M_2)=5 min(M_2), max(M_2)[/mm] und [mm]sup(M_2)[/mm] sind nicht
> definiert?
>  
> Wie kann ich das noch besser begründen ?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de