www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Inhalt Elem.-geo. Figuren
Inhalt Elem.-geo. Figuren < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhalt Elem.-geo. Figuren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 03:52 Fr 28.04.2017
Autor: Joseph95

Aufgabe
Sei A [mm] \in \IR^d [/mm] eine elementargeometrische Figur mit A = [mm] \bigcup_{j=1}^{m} Q_{j} [/mm] = [mm] \bigcup_{i=1}^{n} P_{i} [/mm] mit jeweils paarweisen disjunkten achsenparallelen Quadern [mm] Q_{1}, [/mm] ..., [mm] Q_{m} [/mm] bzw. [mm] P_{1}, [/mm] ..., [mm] P_{n}. [/mm] Zeigen Sie, dass für den Inhalt [mm] \mu [/mm] gilt:
[mm] \sum^m_{j=1} \mu(Q_j) [/mm] = [mm] \sum^n_{i=1} \mu(P_j) [/mm]

Hinweis: Es soll nur die Additivität von [mm] \mu [/mm] auf Menge der achsenparallelen Quader ausgenutzt werden.

Hey Leute,

ich bräuchte mal wieder eure Hilfe. Ich bin mir unsicher bei der Aufgabe, sie kommt mir sehr simpel rüber und befürchte dass ich sie falsch verstehen könnte.
Ich bin wie folgt vorgegangen:
Ich will zunächst den Inhalt von A bestimmen, dafür nutze ich aber nur die Vereinigung der Mengen [mm] Q_1, [/mm] ..., [mm] Q_m. [/mm] Sprich: [mm] \mu(A) [/mm] = [mm] \mu(\bigcup_{j=1}^{m} Q_{j}) [/mm] = [mm] \mu(Q_1 \cup Q_2 \cup [/mm] ... [mm] \cup Q_n) [/mm] = [mm] \mu(Q_1) [/mm] + [mm] \mu(Q_2) [/mm] + ... + [mm] \mu(Q_n) [/mm] = [mm] \sum^m_{j=1} \mu(Q_j) [/mm]

Analog zeige ich es für [mm] \mu(A) [/mm] mit den Vereinigungen von [mm] \mu(\bigcup_{i=1}^{n} P_{i}). [/mm]

Dann folgt ja aus den beiden Gleichungen auch meine Behauptung. Wäre ich nicht dann so fertig?


Viele Grüße
Joseph95

        
Bezug
Inhalt Elem.-geo. Figuren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Fr 28.04.2017
Autor: Gonozal_IX

Hiho,

ja du wärst fertig.

Gruß,
Gono

Bezug
        
Bezug
Inhalt Elem.-geo. Figuren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Fr 28.04.2017
Autor: tobit09

Hallo zusammen!


Ich vermute, dass für diese Aufgabe nur ein Inhalt [mm] $\mu$ [/mm] auf der Menge der achsenparallelen Quader zur Verfügung steht, nicht jedoch ein Inhalt auf der Menge der elementargeometrischen Figuren.

Wenn ich richtig liege, macht es also (noch) keinen Sinn, [mm] $\mu(A)$ [/mm] zu bilden.

Vielmehr soll wohl mit dieser Aufgabe die Wohldefiniertheit einer durch [mm] $\mu(A):=\sum_{i=1}^m\mu(Q_j)$ [/mm] definierten Mengenfunktion auf der Menge der elementargeometrischen Figuren nachgewiesen werden.

Für meine Interpretation spricht der Hinweis, man solle "nur die Additivität von $ [mm] \mu [/mm] $ auf der Menge der achsenparallelen Quader" (also nicht etwa auf der Menge der elementargeometrischen Figuren!) ausnutzen.


Vielleicht kannst du, Joseph95, hier Klarheit bringen.

Außerdem beantworte bitte folgende Fragen:

Ist [mm] $\mu$ [/mm] ein beliebiger Inhalt auf der Menge der achsenparallelen Quader oder ein spezieller?
Wie sind bei euch die achsenparallelen Quader genau definiert? (Mithilfe offener, abgeschlossener oder "halbseitig offener" Intervalle?)


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de