www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Inhomogene DGL 1.Ordnung
Inhomogene DGL 1.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhomogene DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Fr 10.07.2009
Autor: Sabine818

Aufgabe
y' + 15 y =5x*sin(x)

Hallo,
ich versuche die inhomogene DGL y' + 15 y =5x*sin(x) zu lösen.

Die homogene Lösung ist klar: [mm] y_h [/mm] = k * e^(-15x)

Für den Störterm habe ich den partikulären Ansatz [mm] y_p [/mm] = (ax+b)*( c*sin(x) + d*cos(x) ) gewählt.

Setze ich [mm] y_p [/mm] und [mm] y_p' [/mm] in die DGL ein, bekomme ich:

(acx + ad + bc)*COS(x) - (adx - ac + bd)*SIN(x) + 15*[ (ax + b)*(c*SIN(x) + d*COS(x)) ] =5x*sin(x)

(ax(c + 15d) + ad + b(c + 15d))*COS(x) + (ax(15c - d) + ac + b(15c - d))*SIN(x) = 5x*SIN(x)


Der Koeffizientenvergleich endet aber im Chaos:

I) ax(c + 15d) + ad + b(c + 15d) = 0

II) ax(15c - d) + ac + b(15c - d) = 5x

------------------------------------------------------

Ia) ax(c + 15d) = 0

Ib)  ad + b(c + 15d) = 0

IIa)  a(15c - d) = 5

IIb) ac + b(15c - d) = 0

Ab hier nur noch Widersprüche.


Es wäre nett, wenn man mir bitte auf die Sprünge helfen könnte. Sabine


        
Bezug
Inhomogene DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Fr 10.07.2009
Autor: Zwerglein

Hi, Sabine,

> y' + 15 y =5x*sin(x)
>  
> Hallo,
>  ich versuche die inhomogene DGL y' + 15 y =5x*sin(x) zu
> lösen.
>  
> Die homogene Lösung ist klar: [mm]y_h[/mm] = k * e^(-15x)
>  
> Für den Störterm habe ich den partikulären Ansatz [mm]y_p[/mm] =
> (ax+b)*( c*sin(x) + d*cos(x) ) gewählt.
>  
> Setze ich [mm]y_p[/mm] und [mm]y_p'[/mm] in die DGL ein, bekomme ich:
>  
> (acx + ad + bc)*COS(x) - (adx - ac + bd)*SIN(x) + 15*[ (ax
> + b)*(c*SIN(x) + d*COS(x)) ] =5x*sin(x)
>  
> (ax(c + 15d) + ad + b(c + 15d))*COS(x) + (ax(15c - d) + ac
> + b(15c - d))*SIN(x) = 5x*SIN(x)
>  
>
> Der Koeffizientenvergleich endet aber im Chaos:
>  
> I) ax(c + 15d) + ad + b(c + 15d) = 0
>  
> II) ax(15c - d) + ac + b(15c - d) = 5x
>  
> ------------------------------------------------------
>  
> Ia) ax(c + 15d) = 0
>  
> Ib)  ad + b(c + 15d) = 0
>  
> IIa)  a(15c - d) = 5
>  
> IIb) ac + b(15c - d) = 0
>  
> Ab hier nur noch Widersprüche.

Das heißt: Dein Ansatz passt nicht!

Mein Vorschlag:
Probiers mal mit: [mm] y_{p} [/mm] = (ax+b)*sin(x) + (cx+d)*cos(x)

mfG!
Zwerglein  


Bezug
                
Bezug
Inhomogene DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Fr 10.07.2009
Autor: Sabine818

Hallo Zwerglein.
Dein Vorschlag ist leider keine echte Alternative.

>> Probiers mal mit: $ [mm] y_{p} [/mm] $ = (ax+b)*sin(x) + (cx+d)*cos(x)

Wenn du meinen Ansatz umstellst, kommst du genau auf deinen Ansatz:

(ax+b)*( c*sin(x) + d*cos(x) )

= axc*sin(x) + bc*sin(x)  + axd*cos(x) + bd*cos(x)

= [ axc + bc ] * sin(x)  + [ axd + bd ] * cos(x)

= [ ux + v ] * sin(x)  + [ rx + s ] * cos(x)

Die letzte Zeile entspricht deinem Ansatz (nur andere Buchstaben).

Ich bin also auch weiterhin auf der Suche. Sabine



Bezug
                        
Bezug
Inhomogene DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Fr 10.07.2009
Autor: fred97


> Hallo Zwerglein.
>  Dein Vorschlag ist leider keine echte Alternative.
>  
> >> Probiers mal mit: [mm]y_{p}[/mm] = (ax+b)*sin(x) + (cx+d)*cos(x)
>
> Wenn du meinen Ansatz umstellst, kommst du genau auf deinen
> Ansatz:
>  
> (ax+b)*( c*sin(x) + d*cos(x) )
>  
> = axc*sin(x) + bc*sin(x)  + axd*cos(x) + bd*cos(x)
>  
> = [ axc + bc ] * sin(x)  + [ axd + bd ] * cos(x)


In beiden Summanden kommen a und b vor !!!

Versuchs doch mal mit Zwergleins Anatz (welcher allgemeiner als DEiner ist)

FRED



>  
> = [ ux + v ] * sin(x)  + [ rx + s ] * cos(x)
>  
> Die letzte Zeile entspricht deinem Ansatz (nur andere
> Buchstaben).
>  
> Ich bin also auch weiterhin auf der Suche. Sabine
>  
>  


Bezug
                                
Bezug
Inhomogene DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 10.07.2009
Autor: Sabine818

Hallo Zwerglein, hallo Fred.

Es klappt tatsächlich! Zwerglein hat mit seiner Idee ins Schwarze getroffen.

Habt ihr noch eine Idee, wie ich die Lösung mit dem Ansatz  $ [mm] y_p [/mm] $ = (ax+b)*[ sin(x) + cos(x) ] hinbekomme? In meinem alten (falschen) Ansatz ist dann c=d=1. Ein solcher Typ soll nämlich angewendet werden. Eigentlich kann dies aber doch gar nicht funktionieren, oder?

Sabine

Bezug
                                        
Bezug
Inhomogene DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Fr 10.07.2009
Autor: MathePower

Hallo Sabine818,

> Hallo Zwerglein, hallo Fred.
>  
> Es klappt tatsächlich! Zwerglein hat mit seiner Idee ins
> Schwarze getroffen.
>  
> Habt ihr noch eine Idee, wie ich die Lösung mit dem Ansatz
>  [mm]y_p[/mm] = (ax+b)*[ sin(x) + cos(x) ] hinbekomme? In meinem
> alten (falschen) Ansatz ist dann c=d=1. Ein solcher Typ
> soll nämlich angewendet werden. Eigentlich kann dies aber
> doch gar nicht funktionieren, oder?


Besser ist hier der Ansatz:

[mm]y_{p}\left(x\right)=\left(Cx+D\right)*\sin\left(x\right)+\left(Ex+F\right)*\cos\left(x\right)[/mm]

Setze diesen Ansatz in die DGL ein
und mache dann einen []Koeffizientenvergleich


>  
> Sabine


Gruß
MathePower

Bezug
                                                
Bezug
Inhomogene DGL 1.Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Fr 10.07.2009
Autor: Zwerglein

Hallo, MathePower,

und inwiefern unterscheidet sich Dein Ansatz von meinem?!

mfG!
Zwerglein

Bezug
                                                        
Bezug
Inhomogene DGL 1.Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Sa 11.07.2009
Autor: Sabine818

Hallo. Ich habe mit anderen Leuten aus der Lerngruppe gesprochen. Die Vorgabe aus der Aufgabenstellung ist wohl nicht korrekt. Eure Ideen waren richtig und ich habe jetzt die DGl auch lösen können.

Vielen Dank an alle Mitdenker ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de