www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Inhomogene Gleichung
Inhomogene Gleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhomogene Gleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:47 Fr 25.09.2009
Autor: uecki

Hallo,

Satz:
Die inhomogene Gleichung u'=Au +s
Ist s(t) in einer Umgebung von [mm] t_0 [/mm] stetig, so ist das Anfangswertproblem in dieser Umgebung eindeutig lösbar.

Beweis:
u(t) = [mm] e^{A*(t-t_{0})}*u_{0} [/mm] + [mm] \integral_{t_{0}}^{t}{e^{A*(t-\tau)}*s(\tau) d\tau} [/mm]

[mm] \Rightarrow [/mm] u'(t)= [mm] Ae^{A*(t-t_{0})}*u_{0} [/mm] + [mm] Ae^{At}*\integral_{t_0}^{t}{e^{A\tau}*s(\tau) d\tau} [/mm] + [mm] e^{-At}*e^{At}*s(t) [/mm]
= A [ [mm] e^{A*(t-t_{0})}*u_{0} [/mm] + [mm] e^{At}*\integral_{t_0}^{t}{e^{A\tau}*s(\tau) d\tau}] [/mm] + s(t)

So, irgendwie verstehe ich den Beweis nicht richtig. Was zeige ich mit u(t) = [mm] e^{A*(t-t_{0})}*u_{0} [/mm] + [mm] \integral_{t_{0}}^{t}{e^{A*(t-\tau)}*s(\tau) d\tau} [/mm] ? Das soll die Lösung sein, oder was?
Und warum bilde ich danach die Ableitung? Was sagt mir das alles?
Habe leider keine eigenen Ansätze...
Hoffe mir kann jemand helfen.
Danke schon mal.
LG



        
Bezug
Inhomogene Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 25.09.2009
Autor: fred97


> Hallo,
>  
> Satz:
>  Die inhomogene Gleichung u'=Au +s
>  Ist s(t) in einer Umgebung von [mm]t_0[/mm] stetig, so ist das
> Anfangswertproblem in dieser Umgebung eindeutig lösbar.
>  
> Beweis:
>  u(t) = [mm]e^{A*(t-t_{0})}*u_{0}[/mm] +
> [mm]\integral_{t_{0}}^{t}{e^{A*(t-\tau)}*s(\tau) d\tau}[/mm]
>  
> [mm]\Rightarrow[/mm] u'(t)= [mm]Ae^{A*(t-t_{0})}*u_{0}[/mm] +
> [mm]Ae^{At}*\integral_{t_0}^{t}{e^{A\tau}*s(\tau) d\tau}[/mm] +
> [mm]e^{-At}*e^{At}*s(t)[/mm]
>  = A [ [mm]e^{A*(t-t_{0})}*u_{0}[/mm] +
> [mm]e^{At}*\integral_{t_0}^{t}{e^{A\tau}*s(\tau) d\tau}][/mm] +
> s(t)
>  
> So, irgendwie verstehe ich den Beweis nicht richtig. Was
> zeige ich mit u(t) = [mm]e^{A*(t-t_{0})}*u_{0}[/mm] +
> [mm]\integral_{t_{0}}^{t}{e^{A*(t-\tau)}*s(\tau) d\tau}[/mm] ? Das
> soll die Lösung sein, oder was?
>  Und warum bilde ich danach die Ableitung? Was sagt mir das
> alles?


Die Funktion u wird def. durch

u(t) = [mm]e^{A*(t-t_{0})}*u_{0}[/mm] +  [mm]\integral_{t_{0}}^{t}{e^{A*(t-\tau)}*s(\tau) d\tau}[/mm]


Dann wird gezeigt, dass u eine Lösung von u'=Au +s ist (dafür muß nun halt mal differenziert werden !)

Das war alles

FRED



>  Habe leider keine eigenen Ansätze...
>  Hoffe mir kann jemand helfen.
>  Danke schon mal.
>  LG
>  
>  


Bezug
                
Bezug
Inhomogene Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Fr 25.09.2009
Autor: uecki

Aber wieso sieht man denn an der Ableitung das es die Lösung ist?

Bezug
                        
Bezug
Inhomogene Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Fr 25.09.2009
Autor: fred97

Wir haben:

u'(t)= A [ $ [mm] e^{A\cdot{}(t-t_{0})}\cdot{}u_{0} [/mm] $ + $ [mm] e^{At}\cdot{}\integral_{t_0}^{t}{e^{A\tau}\cdot{}s(\tau) d\tau}] [/mm] $ + s(t)


Und was steht in der eckigen Klammer [.....] (bis auf eine Schreibfehler von Dir [mm] (e^{A(-\tau)} [/mm]  statt [mm] e^{A\tau}) [/mm] ???

FRED

Bezug
                                
Bezug
Inhomogene Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Fr 25.09.2009
Autor: uecki

In der eckigen Klammer steht dann wieder u(t).
Also steht da im Prinzip u'(t)= A*u(t) + s(t), und daran sehe ich ja, das die Gleichung erfüllt ist. Richtig?

Bezug
                                        
Bezug
Inhomogene Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Fr 25.09.2009
Autor: fred97

Bingo ! Und damit ist u eine Lösung

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de