www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Injektiv
Injektiv < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 So 31.10.2010
Autor: SolRakt

Aufgabe
Es sei f : M [mm] \to [/mm] N eine Abbildung und M1;M2 [mm] \subseteq [/mm] M sowie N1 [mm] \subseteq [/mm] N. Zeigen Sie:
a) Falls f injektiv ist, gilt f (M1 [mm] \cap [/mm] M2) = f (M1) [mm] \cap [/mm]  f (M2).
b) Falls f injektiv ist, gilt [mm] f^{-1}( [/mm] f (M1)) = M1.
c) Falls f surjektiv ist, gilt f ( [mm] f^{-1}(N1)) [/mm] = N1.





Hallo,

Neben dem anderen Thema muss ich hier ja auch wieder was beweisen, jedoch weiß ich garnicht, wie ich da anfangen soll. Danke für jede Hilfe.

        
Bezug
Injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 So 31.10.2010
Autor: angela.h.b.


> Es sei f : M [mm]\to[/mm] N eine Abbildung und M1;M2 [mm]\subseteq[/mm] M
> sowie N1 [mm]\subseteq[/mm] N. Zeigen Sie:
>  a) Falls f injektiv ist, gilt f (M1 [mm]\cap[/mm] M2) = f (M1) [mm]\cap[/mm]
>  f (M2).
>  b) Falls f injektiv ist, gilt [mm]f^{-1}([/mm] f (M1)) = M1.
>  c) Falls f surjektiv ist, gilt f ( [mm]f^{-1}(N1))[/mm] = N1.
>  
>
>
>
> Hallo,
>  
> Neben dem anderen Thema muss ich hier ja auch wieder was
> beweisen, jedoch weiß ich garnicht, wie ich da anfangen
> soll. Danke für jede Hilfe.

Hallo,

ich gehe davon aus, daß Du weißt, was injektiv und surjektiv bedeutet.
Bei a) sollst Du unter der Voraussetzung, daß f injektiv ist, zeigen, daß die Mengen f(M1 [mm] $\cap$ [/mm] M2) und [mm] f(M1)$\cap$f(M2) [/mm] gleich sind.
Für Mengengleichheit ist lt. Vorlesung zu zeigen, daß jede Menge Teilmenge der anderen ist.

Es ist also zu zeigen
a1)f(M1 [mm] $\cap$ [/mm] M2) [mm] \subseteq f(M1)$\cap$f(M2) [/mm]
und
[mm] a2)f(M1)$\cap$f(M2)\subseteq [/mm] f(M1 [mm] $\cap$ [/mm] M2)

So etwas zeigt man meist elementweise, dh.

für [mm] a1)x\in [/mm] f(M1 [mm] $\cap$ [/mm] M2) [mm] \Rightarrow x\in f(M1)$\cap$f(M2) [/mm]
und
für a2) [mm] x\in f(M1)$\cap$f(M2)\Rightarrow. [/mm] f(M1 [mm] $\cap$ [/mm] M2)

Leg' mal los. Du wirst sehen, daß eine der Richtungen für alle f gilt, nicht nur für die injektiven.
Für die andere Richtung benötigst Du die Injektivität.

Gruß v. Angela




Bezug
                
Bezug
Injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 So 31.10.2010
Autor: SolRakt

[mm] f(M_{1} \cap M_{2}) \subseteq f(M_{1}) \cap f(M_{2}) [/mm] ?

Wie beweist man das?

{x [mm] \varepsilon M_{1} \wedge [/mm] x [mm] \varepsilon M_{2}} [/mm] = ...?

Ich hab da noch ein paar Probleme.



Bezug
                        
Bezug
Injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 So 31.10.2010
Autor: angela.h.b.


>  [mm]f(M_{1} \cap M_{2}) \subseteq f(M_{1}) \cap f(M_{2})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

?

>  
> Wie beweist man das?
>  
> {x [mm]\varepsilon M_{1} \wedge[/mm] x [mm]\varepsilon M_{2}}[/mm] = ...?
>  
> Ich hab da noch ein paar Probleme.

Hallo,

ich hatte doch zuvor geschrieben, daß Du zeigen mußt, daß jedes Element, welches in der Menge links ist, auch in der rechten Menge liegt, daß also zu zeigen ist

[mm] $x\in f(M_{1} \cap M_{2}) \Rightarrow f(M_{1}) \cap f(M_{2})$. [/mm]

Beweis: Es sei f injektiv, und
es sei [mm] x\in f(M_{1} \cap M_{2}). [/mm]

Jetzt mußt Du mal Deine Mitschrift bemühen und herausfinden, was es bedeutet, wenn x im Bild der Menge [mm] M_{1} \cap M_{2} [/mm] liegt.

Dann existiert ein [mm] y\in [/mm] ... mit ...

Also?

Jetzt mach mal was!
Mit "ich hab' ein paar Probleme" ist's nicht getan. Du mußt sie lösen, und zwar durch Aktivität.
Das Material, aus dem die beweise gebaut werden, sind die Definitionen und Sätze, die in der Vorlesung dran waren.

Gruß v. Angela

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de