www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Injektiv, Surjektiv
Injektiv, Surjektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv, Surjektiv: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:01 Sa 05.11.2005
Autor: Lara1985

Hallo Ihr, ich hoffe Ihr könnt mir helfen, vorweg diese Aufgabe wurde auch schon bei Mathebord reingestellt, allerdings bekomme ich dort keine wirklich hilfreichen Tipps, also versuche ich es hier noch mal:

Untersuchen Sie die Funktion g:  [mm] \IR² \to \IR [/mm] , z:=g(x,y):=x+y auf Injektivität, Surjektivität und Bijektivität.

Also zur Injektivität haben wir eine Möglichkeit gefunden:
x+y=z
1+0=1
0+1=1 damit wäre es nicht Injektiv! Kann man das so machen?

Und bei Surjektiv kennen wir zwar die Definition, wissen aber nicht, wie wir das umsetzen sollen, also erst mal die Definition lautet:
Zu jedem y Element in Y muss es mindestens ein x Element in X geben mit
f(x)=y

Also wäre dankbar, wenn Ihr mir einen Tipp geben könntet, gruß Lara

        
Bezug
Injektiv, Surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Sa 05.11.2005
Autor: angela.h.b.


>  
> Untersuchen Sie die Funktion g:  [mm]\IR² \to \IR[/mm] ,
> z:=g(x,y):=x+y auf Injektivität, Surjektivität und
> Bijektivität.
>  
> Also zur Injektivität haben wir eine Möglichkeit gefunden:
>  x+y=z
>  1+0=1
>  0+1=1 damit wäre es nicht Injektiv! Kann man das so
> machen?

Hallo,

Dein Gedanke ist goldrichtig, Du hast ein Gegenbeispiel für Injektivität gefunden. Nur - Du mußt es anders aufschreiben, so geht es nie und nimmer durch die Korrektur, weil man nicht klipp und klar die Gedankengänge nachvollziehen kann.

Aufschreiben kannst Du es so:

Angenommen, g wäre injektiv.
Dann gilt für alle (x,y),(x',y') [mm] \in \IR [/mm] :  g((x,y))=g((x',y')) ==> (x,y)=(x',y').

Es ist jedoch g((1,0))=1=g((0,1))  und (1,0) [mm] \not= [/mm] (0,1).
Also ist g nicht injektiv.


>  
> Und bei Surjektiv kennen wir zwar die Definition, wissen
> aber nicht, wie wir das umsetzen sollen, also erst mal die
> Definition lautet:
>  Zu jedem y Element in Y muss es mindestens ein x Element
> in X geben mit
> f(x)=y

Gut. Die Kenntnis der Definitionen ist die halbe Miete...

Bezogen auf Deine Funktion g würde das heißen:

Zu jedem y [mm] \in \IR [/mm] gibt es ein (a,b) [mm] \in \IR^2 [/mm] mit g((a,b))=a+b=y.

Damit ist der Auftrag klar: zu einem vorgegebenen y mußt Du so ein Zahlenpaar finden, welches die Bedingung oben erfüllt. Das ist nicht schwer, oder?

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de