www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Injektivität und Surjektivitä.
Injektivität und Surjektivitä. < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität und Surjektivitä.: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:56 Di 11.12.2012
Autor: Fr91

Aufgabe
Es seien X,Y endliche Mengen mit |X| = |Y|, und sei f : X [mm] \to [/mm] Y eine Abbildung. Zeigen Sie:
(a). Wenn f injektiv ist, dann ist f auch surjektiv;
(b). wenn f surjektiv ist, dann ist f auch injektiv.

Hallo Leute,
Da ihr uns letzte Woche so Super helfen konntet, stelle ich mal wieder eine Frage :-)

Ansich ist die Definition von Injektivität und Surjektivität natürlich klar. Ich verstehe nur nicht so ganz: Wenn |X| = |Y|, bedeutet das doch, dass die Mengen, da sie aufeinander abbilden, gleichmächtig sind, oder? In dem Fall müsste doch eine Bijektivität vorliegen?

Soweit zum Verständnis. Nun, unabhängig von der Korrektheit des obigen Teils: Wie zeige ich das in einer so allgemeinen Form? Ich meine, mit f: X [mm] \to [/mm] Y komme ich nicht ganz klar..

Danke für jeden Tipp :-)

        
Bezug
Injektivität und Surjektivitä.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Di 11.12.2012
Autor: Diophant

Hallo,

> Es seien X,Y endliche Mengen mit |X| = |Y|, und sei f : X
> [mm]\to[/mm] Y eine Abbildung. Zeigen Sie:
> (a). Wenn f injektiv ist, dann ist f auch surjektiv;
> (b). wenn f surjektiv ist, dann ist f auch injektiv.
> Hallo Leute,
> Da ihr uns letzte Woche so Super helfen konntet, stelle
> ich mal wieder eine Frage :-)
>
> Ansich ist die Definition von Injektivität und
> Surjektivität natürlich klar. Ich verstehe nur nicht so
> ganz: Wenn |X| = |Y|, bedeutet das doch, dass die Mengen,
> da sie aufeinander abbilden, gleichmächtig sind, oder? In
> dem Fall müsste doch eine Bijektivität vorliegen?

Nicht automatisch. Die Schreibweise

f: [mm] X\to{Y} [/mm]

bedeutet nicht automatisch, dass jedes Element von Y im Bild von X unter f liegt.

> Soweit zum Verständnis. Nun, unabhängig von der
> Korrektheit des obigen Teils: Wie zeige ich das in einer so
> allgemeinen Form? Ich meine, mit f: X [mm]\to[/mm] Y komme ich nicht
> ganz klar..

Na ja, beginne mal mit einer Überlegung. Wenn f injektiv ist, werden unterschiedlichen Elementen aus X unterschiedliche Elemente aus Y zugeordnet. Und nun kommt die Gleichmächtigkeit hinzu. Nimm doch einfach mal an, dass es Elemente in Y gibt, für die

[mm]y\not\in{f(X)}[/mm]

gilt und führe das zum Widerspruch. Bei der zweiten Aufgabe kann man IMO ähnlich vorgehen.


Gruß, Diophant





Bezug
                
Bezug
Injektivität und Surjektivitä.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Di 11.12.2012
Autor: Fr91

Hat soweit super geklappt, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de