www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Inklusion - Exklusion ?
Inklusion - Exklusion ? < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inklusion - Exklusion ?: Ansatz korrekt ?
Status: (Frage) beantwortet Status 
Datum: 21:55 Di 29.05.2012
Autor: clemenum

Aufgabe
Wieviele mögliche "Worte" (=Buchstabenanordnungen) kann man aus [mm] A,B,\ldots, [/mm] F bilden, sodass nichtmal paarweise alphabetische Reihenfolge vorliegt, d.h. niemals B auf A, niemals C auf B,... , niemals F auf E folgt ?



Ansatzidee: Inklusion - Exklusion

Sei [mm] $U_{AB} [/mm] $ die Menge aller Permutationen, wo $B$ direkt auf $A,... [mm] U_{EF}$ [/mm] die Menge aller Permutationen, wo $F$ direkt auf $E$ folgt.
Somit lässt sich Inklusion-Exklusion direkt anwenden und man erhält:
[mm] $\cup [/mm] U = [mm] {5\choose 1 }4! [/mm] - [mm] {5\choose 2 } [/mm] 3! - [mm] {5\choose 3 }2! [/mm] - [mm] 5\cdot [/mm] 1! + 1 = 76 $

Um das gewünschte Ergebnis zu bekommen, reicht es ersichtlich aus von der Kardinalität der Menge ALLER Permutation zu subtrahieren: $6! - 76 = 644.$

Damit gibt es genau 644 Permutationen von $(A,B,C,D,E,F)$ mit nichtmal paarweise alphabetischer Anordnung.

Bin ich richtig vorgegangen? Also das Ansatztechnische scheint zu stimmen, wenn ich mich irgendwo geirrt habe, dann habe ich mich verrechnet. Oder kann mir jemand einen Denkfehler nachweisen?


        
Bezug
Inklusion - Exklusion ?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Di 29.05.2012
Autor: kamaleonti

Hallo,
> Wieviele mögliche "Worte" (=Buchstabenanordnungen) kann
> man aus [mm]A,B,\ldots,[/mm] F bilden, sodass nichtmal paarweise
> alphabetische Reihenfolge vorliegt, d.h. niemals B auf A,
> niemals C auf B,... , niemals F auf E folgt ?
>  
>
> Ansatzidee: Inklusion - Exklusion
>
> Sei [mm]U_{AB}[/mm] die Menge aller Permutationen, wo [mm]B[/mm] direkt auf
> [mm]A,... U_{EF}[/mm] die Menge aller Permutationen, wo [mm]F[/mm] direkt auf
> [mm]E[/mm] folgt.
> Somit lässt sich Inklusion-Exklusion direkt anwenden und man erhält:
> [mm]\cup U = {5\choose 1 }4! - {5\choose 2 } 3! - {5\choose 3 }2! - 5\cdot 1! + 1 = 76[/mm]

Das stimmt nicht.

Es gibt 5*4! Permutationen mit B nach A. (5 Möglichkeiten Position von A, 4! die restlichen 4 Elemente aufzuteilen). Analog gibt es 5*4! Möglichkeiten für C nach B, etc.

Permutationen mit 3 Buchstaben in richtiger Reihenfolge (ABC, BCD, CDE, DEF) wurden doppelt gezählt -> Abziehen.

Dann wurden Permutationen mit 4 Buchstaben in richtiger Reihenfolge (ABCD, BCDE, CDEF) zu viel abgezogen -> Addieren.

Permutationen mit 5 Buchstaben in richtiger Reihenfolge[...] -> Abziehen

Permutationen mit 6 Buchstaben in richtiger Reihenfolge[...] -> Addieren


Rechne also nochmal nach.

LG

>
> Um das gewünschte Ergebnis zu bekommen, reicht es
> ersichtlich aus von der Kardinalität der Menge ALLER
> Permutation zu subtrahieren: [mm]6! - 76 = 644.[/mm]
>  
> Damit gibt es genau 644 Permutationen von [mm](A,B,C,D,E,F)[/mm] mit
> nichtmal paarweise alphabetischer Anordnung.
>  
> Bin ich richtig vorgegangen? Also das Ansatztechnische
> scheint zu stimmen, wenn ich mich irgendwo geirrt habe,
> dann habe ich mich verrechnet. Oder kann mir jemand einen
> Denkfehler nachweisen?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de