www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Inn(G), i surj. Gruppenhomom.
Inn(G), i surj. Gruppenhomom. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inn(G), i surj. Gruppenhomom.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Mo 24.05.2010
Autor: congo.hoango

Aufgabe
G sei eine Gruppe. [mm] i_a:G\rightarrow [/mm] G, g [mm] \rightarrow aga^{-1} [/mm] ist Automorphismus, [mm] Inn(G)=\{i_a | a\in G\} [/mm] ist Untergruppe der Automorphismengruppe AutG.

Zeigen Sie, dass die Abbildung

i: G [mm] \rightarrow [/mm] Inn(G), [mm] g\rightarrow i_g [/mm]

ein surjektiver Gruppenhomomorphismus ist und dass [mm] Inn(G)\cong [/mm] G \ Ze(G) gilt. Dabei ist Ze(G) das Zentrum von G.

Hallo,

ich weiß nicht recht ob ich diese Abbildung i richtig verstehe.
Sie bildet also Gruppenelemente auf eine Abbildung aus Inn(G) ab. Also quasi [mm] i(g)=i_g, [/mm] wobei [mm] i_g(g)=ggg^{-1} [/mm] wäre. Richtig?

Wie zeigt man  denn aber bei so  einer Abbildung, dass sie ein Homomorphismus ist? Ich hätte das jetzt so gemacht:

Seien g,h [mm] \in [/mm] G.
[mm] \Rightarrow i(gh)=i_gi_h=i(g)i(h). [/mm]

Aber das sieht mir ein bisschen zu kurz aus um richtig zu sein :-)

Liegt der Fehler schon darin, dass ich die Abbildung falsch verstanden habe?

Danke für alle Hinweise und Tips im Voraus und beste Grüße

vom congo.

        
Bezug
Inn(G), i surj. Gruppenhomom.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Di 25.05.2010
Autor: angela.h.b.


> G sei eine Gruppe. [mm]i_a:G\rightarrow[/mm] G, g [mm]\rightarrow aga^{-1}[/mm]
> ist Automorphismus, [mm]Inn(G)=\{i_a | a\in G\}[/mm] ist Untergruppe
> der Automorphismengruppe AutG.
>  
> Zeigen Sie, dass die Abbildung
>
> i: G [mm]\rightarrow[/mm] Inn(G), [mm]g\rightarrow i_g[/mm]
>  
> ein surjektiver Gruppenhomomorphismus ist und dass
> [mm]Inn(G)\cong[/mm] G \ Ze(G) gilt. Dabei ist Ze(G) das Zentrum von
> G.
>  Hallo,
>  
> ich weiß nicht recht ob ich diese Abbildung i richtig
> verstehe.
>  Sie bildet also Gruppenelemente auf eine Abbildung aus
> Inn(G) ab. Also quasi [mm]i(g)=i_g,[/mm] wobei [mm]i_g(g)=ggg^{-1}[/mm]
> wäre. Richtig?

Hallo,

und [mm] i_g(x)=gxg^{-1} [/mm] für alle [mm] x\in [/mm] G.

>  
> Wie zeigt man  denn aber bei so  einer Abbildung, dass sie
> ein Homomorphismus ist? Ich hätte das jetzt so gemacht:
>  
> Seien g,h [mm]\in[/mm] G.
>  [mm]\Rightarrow i(gh)=i_gi_h=i(g)i(h).[/mm]

Daß das gilt, ist ja erst zu zeigen.

Zunächst sehe ich nur, daß [mm] i(gh)=i_g_h [/mm] und daß [mm] i(g)\circ i(h)=i_g\circ i_h. [/mm]

Nun mußt Du die Gleichheit dieser Funktionen vorrechnen.

>  
> Aber das sieht mir ein bisschen zu kurz aus um richtig zu
> sein :-)
>  
> Liegt der Fehler schon darin, dass ich die Abbildung falsch
> verstanden habe?

Die Abbildung hast Du richtig verstanden.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de